首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26832篇
  免费   2479篇
  国内免费   2299篇
  2023年   195篇
  2022年   465篇
  2021年   777篇
  2020年   627篇
  2019年   735篇
  2018年   757篇
  2017年   635篇
  2016年   879篇
  2015年   1374篇
  2014年   1618篇
  2013年   1800篇
  2012年   2285篇
  2011年   2017篇
  2010年   1444篇
  2009年   1285篇
  2008年   1698篇
  2007年   1541篇
  2006年   1402篇
  2005年   1309篇
  2004年   1219篇
  2003年   1110篇
  2002年   958篇
  2001年   653篇
  2000年   548篇
  1999年   518篇
  1998年   340篇
  1997年   266篇
  1996年   250篇
  1995年   219篇
  1994年   190篇
  1993年   156篇
  1992年   219篇
  1991年   195篇
  1990年   160篇
  1989年   162篇
  1988年   144篇
  1987年   123篇
  1986年   112篇
  1985年   79篇
  1984年   77篇
  1983年   84篇
  1982年   52篇
  1981年   56篇
  1980年   58篇
  1979年   66篇
  1978年   62篇
  1976年   54篇
  1973年   50篇
  1972年   45篇
  1970年   44篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
Cephapirin, a cephalosporin antibiotic, is used by the majority of dairy farms in the US. Fecal and urinary excretion of cephapirin could introduce this compound into the environment when manure is land applied as fertilizer, and may cause development of bacterial resistance to antibiotics critical for human health. The environmental loading of cephapirin by the livestock industry remains un-assessed, largely due to a lack of appropriate analytical methods. Therefore, this study aimed to develop and validate a cephapirin quantification method to capture the temporal pattern of cephapirin excretion in dairy cows following intramammary infusion. The method includes an extraction with phosphate buffer and methanol, solid-phase extraction (SPE) clean-up, and quantification using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The LOQ values of the developed method were 4.02 µg kg−1 and 0.96 µg L−1 for feces and urine, respectively. This robust method recovered >60% and >80% cephapirin from spiked blank fecal and urine samples, respectively, with acceptable intra- and inter-day variation (<10%). Using this method, we detected trace amounts (µg kg−1) of cephapirin in dairy cow feces, and cephapirin in urine was detected at very high concentrations (133 to 480 µg L−1). Cephapirin was primarily excreted via urine and its urinary excretion was influenced by day (P = 0.03). Peak excretion (2.69 mg) was on day 1 following intramammary infusion and decreased sharply thereafter (0.19, 0.19, 0.08, and 0.17 mg on day 2, 3, 4, and 5, respectively) reflecting a quadratic pattern of excretion (Quadratic: P = 0.03). The described method for quantification of cephapirin in bovine feces and urine is sensitive, accurate, and robust and allowed to monitor the pattern of cephapirin excretion in dairy cows. This data will help develop manure segregation and treatment methods to minimize the risk of antibiotic loading to the environment from dairy farms.  相似文献   
3.
4.
DC‐UbP/UBTD2 is a ubiquitin (Ub) domain‐containing protein first identified from dendritic cells, and is implicated in ubiquitination pathway. The solution structure and backbone dynamics of the C‐terminal Ub‐like (UbL) domain were elucidated in our previous work. To further understand the biological function of DC‐UbP, we then solved the solution structure of the N‐terminal domain of DC‐UbP (DC‐UbP_N) and studied its Ub binding properties by NMR techniques. The results show that DC‐UbP_N holds a novel structural fold and acts as a Ub‐binding domain (UBD) but with low affinity. This implies that the DC‐UbP protein, composing of a combination of both UbL and UBD domains, might play an important role in regulating protein ubiquitination and delivery of ubiquitinated substrates in eukaryotic cells.  相似文献   
5.
The Indochinese silvered langur (Trachypithecus germaini) is distributed to the west of Mekong River in Cambodia, Lao PDR, Thailand and Vietnam. During a two‐year study, from May 2014 to May 2016, we collected 320.44 hr of behavior, with 17,040 feeding bouts recorded (142 hr) for T. germaini on Chua Hang Karst Mountain, Kien Luong District, Kien Giang Province, Vietnam. Feeding accounted for 45% of the Indochinese silvered langurs’ activity budget. The plant diet of the Indochinese silvered langurs was principally composed of young leaves (58%), followed by mature leaves (9.5%), fruits (22.7%), flowers (4.7%), buds (3.3%), petioles (1.2%), and other (0.5%). A total of 58 plant species were fed on by the silvered langurs, and leaves of eight species (Phyllathus reticulatus, Ficus rumphii, Ficus tinctoria, Ficus microcarpa, Cayratia trifolia, Streblus ilicifolia, Combretum latifolium, and Streblus asper) were fed on throughout the year. P. reticulatus was most frequently eaten (13.9% feeding time, n = 1,733). Food selection differed significantly between months and seasons. The Indochinese silvered langurs ate 27 plant species in the wet season compared with 23 plant species in the dry season. Leaf chemical composition of two food categories, 16 eaten species (with 10 most frequently consumed species and six least consumed species), and four noneaten species, were analyzed. Feeding samples from eaten species in the Indochinese silvered langurs's diet contained lower amounts of condensed tannin, lignin, protein, ash, and lipids, but a higher amount of total sugar compared with samples from noneaten species. Furthermore, the most frequently consumed species contained lower amounts of lignin compared with the less frequently consumed species. Using a generalized linear model with five variables, including neutral detergent fiber (NDF), total sugar, lignin, lipid, and calcium (Ca) indicated that NDF positively correlated and lignin content negatively correlated with feeding records in the diet of these langur.  相似文献   
6.
We tried to establish compatible carbon content models of individual trees for a Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) plantation from Fujian province in southeast China. In general, compatibility requires that the sum of components equal the whole tree, meaning that the sum of percentages calculated from component equations should equal 100%. Thus, we used multiple approaches to simulate carbon content in boles, branches, foliage leaves, roots and the whole individual trees. The approaches included (i) single optimal fitting (SOF), (ii) nonlinear adjustment in proportion (NAP) and (iii) nonlinear seemingly unrelated regression (NSUR). These approaches were used in combination with variables relating diameter at breast height (D) and tree height (H), such as D, D2H, DH and D&H (where D&H means two separate variables in bivariate model). Power, exponential and polynomial functions were tested as well as a new general function model was proposed by this study. Weighted least squares regression models were employed to eliminate heteroscedasticity. Model performances were evaluated by using mean residuals, residual variance, mean square error and the determination coefficient. The results indicated that models with two dimensional variables (DH, D2H and D&H) were always superior to those with a single variable (D). The D&H variable combination was found to be the most useful predictor. Of all the approaches, SOF could establish a single optimal model separately, but there were deviations in estimating results due to existing incompatibilities, while NAP and NSUR could ensure predictions compatibility. Simultaneously, we found that the new general model had better accuracy than others. In conclusion, we recommend that the new general model be used to estimate carbon content for Chinese fir and considered for other vegetation types as well.  相似文献   
7.
DNA damage is a common hazard that all cells have to combat. Saccharomyces cerevisiae HMO2 is a high mobility group protein (HMGB) that is a component of the chromatin-remodeling complex INO80, which is involved in double strand break (DSB) repair. We show here using DNA end-joining and exonuclease protection assays that HMO2 binds preferentially to DNA ends. While HMO2 binds DNA with both blunt and cohesive ends, the sequence of a single stranded overhang significantly affects binding, supporting the conclusion that HMO2 recognizes features at DNA ends. Analysis of the effect of duplex length on the ability of HMO2 to protect DNA from exonucleolytic cleavage suggests that more than one HMO2 must assemble at each DNA end. HMO2 binds supercoiled DNA with higher affinity than linear DNA and has a preference for DNA with lesions such as pairs of tandem mismatches; however, comparison of DNA constructs of increasing length suggests that HMO2 may not bind stably as a monomer to distorted DNA. The remarkable ability of HMO2 to protect DNA from exonucleolytic cleavage, combined with reports that HMO2 arrives early at DNA DSBs, suggests that HMO2 may play a role in DSB repair beyond INO80 recruitment.  相似文献   
8.
9.
10.
Relationships between induced high leaf intercellular CO2 concentrations, leaf K+ and NO3 ? ion movement and early fruit formation under macronutrient limitation are not well understood. We examined the effects and interactions of reduced K/N input treatments on leaf intercellular CO2, photosynthesis rate, carboxylation and water use efficiency, berry formation as well as leaf/fruit K+, NO3 ? and photosynthate retention of strawberry (Fragaria × ananassa Duch.) to enhance low-input agriculture. The field study was conducted in Nova Scotia, eastern Canada during 2009–2010. The experimental treatments consisted of five K2O rates (0, 6, 12, 18, and 24 kg ha?1) and five N rates (0, 5, 10, 15, and 20 kg ha?1), representing respectively, 0, 25, 50, 75, and 100 % of regular macronutrient recommendations based on the soil testing. The treatments were arranged in a split-plot design with three blocks in the field. The cultivar was ‘Mira’, a June-bearing crop. The results showed that strawberry plants treated with 25 %-reduced inputs could induce significantly higher leaf intercellular CO2 concentrations to improve plant photosynthesis, carboxylation and water use efficiency and translocation of leaf/fruit K+ and dissolved solids, which could advance berry formation by 6 days and produce significantly higher marketable yields (P < 0.05). Higher leaf intercellular CO2 inhibited leaf/fruit NO3 ? ion retention, but this inhibition did not occur in leaf/fruit K+ retention. Linear interactions of the K/N treatments were significant on fruit marketable yields, intercellular CO2, net photosynthesis, leaf transpiration rates, and leaf temperatures (P < 0.05). It was concluded that higher leaf CO2 could enhance plant photosynthesis, promote plant carboxylation and water use efficiency, and advance berry formation, but it could inhibit leaf NO3 ? retention. This inhibition did not find in leaf K+ ion and dissolved solid retention. Overlay co-limitation of leaf intercellular CO2 and translocation of leaf/fruit K+/NO3 ? and total dissolved solids could constrain more fruit formation attributes under full macronutrient supply than reduced inputs. It was suggested that low input would be an optimal and sustainable option for improving small fruit crop physiological development and dealing with macronutrient deficiency challenge.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号