首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   337篇
  免费   18篇
  2023年   7篇
  2022年   6篇
  2021年   18篇
  2020年   8篇
  2019年   3篇
  2018年   3篇
  2017年   6篇
  2016年   13篇
  2015年   19篇
  2014年   10篇
  2013年   30篇
  2012年   23篇
  2011年   29篇
  2010年   28篇
  2009年   12篇
  2008年   12篇
  2007年   16篇
  2006年   9篇
  2005年   11篇
  2004年   7篇
  2003年   11篇
  2002年   5篇
  2001年   6篇
  2000年   2篇
  1999年   3篇
  1998年   4篇
  1997年   2篇
  1996年   3篇
  1995年   4篇
  1994年   4篇
  1993年   4篇
  1992年   1篇
  1991年   5篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1986年   2篇
  1983年   4篇
  1982年   6篇
  1981年   1篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1972年   4篇
  1969年   1篇
  1968年   4篇
  1965年   1篇
排序方式: 共有355条查询结果,搜索用时 265 毫秒
1.
The tetrasaccharides GalNAcß1-4[NeuAc2-3]Galß1-4Glc and GalNAcß1-4[NeuAc2-3]Galß1-4GlcNAc were synthesised by enzymic transfer of GalNAc from UDP-GalNAc to 3-sialyllactose (NeuAc2-3Galß1-4Glc) and 3-sialyl-N-acetyllactosamine (NeuAc2-3Galß1-4GlcNAc). The structures of the products were established by methylation and1H-500 MHz NMR spectroscopy. In Sda serological tests the product formed with 3-sialyl-N-acetyllactosamine was highly active whereas that formed with 3-sialyllactose had only weak activity.  相似文献   
2.
CO2 and water vapour exchange rates of four alpine herbs namely: Rheum emodi, R. moorcroftianum, Megacarpaea polyandra and Rumex nepalensis were studied under field conditions at 3600 m (natural habitat) and 550 m altitudes. The effect of light and temperature on CO2 and water vapour exchange was studied in the plants grown at lower altitude. In R. moorcroftianum and R. nepalensis, the average photosynthesis rates were found to be about three times higher at 550 m as compared to that under their natural habitat. However, in M. polyandra, the CO2 exchange rates were two times higher at 3600 m than at 550 m but in R. emodi, there were virtually no differences at the two altitudes. These results indicate the variations in the CO2 exchange rates are species specific. The change in growth altitude does not affect this process uniformly.The transpiration rates in R. emodi and M. polyandra were found to be very high at 3600 m compared to 550 m and are attributed to overall higher stomatal conductance in plants of these species, grown at higher altitude. The mid-day closure of stomata and therefore, restriction of transpirational losses of water were observed in all the species at 550 m altitude. In addition to the effect of temperature and relative humidity, the data also indicate some endogenous rhythmic control of stomatal conductance.The temperature optima for photosynthesis was close to 30°C in M. polyandra and around 20°C in the rest of the three species. High temperature and high light intensity, as well as low temperature and high light intensity, adversely affect the net rate of photosynthesis in these species.Both light compensation point and dark respiration rate increased with increasing temperature.The effect of light was more prominent on photosynthesis than the effect of temperature, however, on transpiration the effect of temperature was more prominent than the effect of light intensity.No definite trends were found in stomatal conductance with respect to light and temperature. Generally, the stomatal conductance was highest at 20°C.The study reveals that all these species can easily be cultivated at relatively lower altitudes. However, proper agronomical methodology will need to be developed for better yields.  相似文献   
3.
4.
5.
Cereals are the world's major source of food for human nutrition. Among these, rice (Oryza sativa) is the most prominent and represents the staple diet for more than two-fifths (2.4 billion) of the world's population, making it the most important food crop of the developing world (Anon., 2000a). Rice production in vast stretches of coastal areas is hampered due to high soil salinity. This is because rice is a glycophyte and it does not grow well under saline conditions. In order to increase rice production in these areas there is a need to develop rice varieties suited to saline environments. Research has shown that Porteresia coarctata, a highly salt tolerant wild relative of rice growing in estuarine soils, is an important material for transferring salt tolerant characteristics to rice. It is quite possible that Porteresia may be used as a parent for evolving better and truly salt resistant varieties. The inadequate results and the difficulties associated with conventional breeding techniques necessitate the use of the tools of crop biotechnology in unravelling some of the characteristics of Porteresia that have been highlighted in this report. In view of the limited resources available for increasing salinity tolerance to the breeders to wild rice germplasm, Porteresia is undoubtedly one of the key source species for elevating salinity tolerance in cultivated rice.  相似文献   
6.
7.
The effect of neurotensin on submaximally-stimulated hepatobiliary and pancreatic secretion was studied in 6 healthy subjects. An intravenous infusion of neurotensin 1.4 ± 0.3 pmol/kg/min, designed to reproduce plasma neurotensin immunoreactivity levels within the physiological range, produced a significant increase in pancreatic bicarbonate output. Plasma concentrations of pancreatic polypeptide rose by 83 ± 16 pmol/l and were associated with a small reduction in trypsin, but no significant change in bilirubin outputs.  相似文献   
8.
Effects of maternal ethanol consumption were investigated on the rates of protein synthehsis by livers of foetal and neonatal rats both in vivo and in vitro, and on the activities of enzymes involved in protein synthesis and degradation. The rates of general protein synthesis by ribosomes in vitro studied by measuring the incorporation of [14C]leucine into ribosomal protein showed that maternal ethanol consumption resulted in an inhibition of the rates of protein synthesis by both foetal and neonatal livers from the ethanol-fed group. The rates of incorporation of intravenously injected [14C]leucine into hepatic proteins were also significantly lower in the foetal, neonatal and adult livers from the ethanol-fed group. Incubation of adult-rat liver slices with ethanol resulted in an inhibition of the incorporation of [14C]leucine into hepatic proteins; however, this effect was not observed in the foetal liver slices. This effect of externally added ethanol was at least partially prevented by the addition of pyrazole to the adult liver slices. Pyrazole addition to foetal liver slices was without significant effect on the rates of protein synthesis. Cross-mixing experiments showed that the capacity of both hepatic ribosomes and pH5 enzyme fractions to synthesize proteins was decreased in the foetal liver from the ethanol-fed group. Maternal ethanol consumption resulted in a decrease in hepatic total RNA content, RNA/DNA ratio and ribosomal protein content in the foetal liver. Foetal hepatic DNA content was not significantly affected. Ethanol consumption resulted in a significant decrease in proteolytic activity and the activity of tryptophan oxygenase in the foetal, neonatal and adult livers. It is possible that the mechanisms of inhibition of protein synthesis observed here in the foetal liver after maternal ethanol consumption may be responsible for at least some of the changes observed in 'foetal alcohol syndrome'.  相似文献   
9.
Plasma Physics Reports - So far, the detailed experimental effect of the inductance on the X-ray yield in the Filippov-type plasma focus devices has not been documented in literature. In this...  相似文献   
10.
Backbone dynamics and conformational properties of drug peptide salmon calcitonin have been studied in aqueous solution using nuclear magnetic resonance (NMR). Although salmon calcitonin (sCT) is largely unfolded in solution (as has been reported in several circular dichroism studies), the secondary Hα chemical shifts and three bond HN–Hα coupling constants indicated that most of the residues of the peptide are populating the α‐helical region of the Ramachandran (?, ψ) map. Further, the peptide in solution has been found to exhibit multiple conformational states exchanging slowly on the NMR timescale (102–103 s?1), inferred by the multiple chemical shift assignments in the region Leu4–Leu12 and around Pro23 (for residues Gln20–Tyr22 and Arg24). Possibly, these slowly exchanging multiple conformational states might inhibit symmetric self‐association of the peptide and, in part, may account for its reduced aggregation propensity compared with human calcitonin (which lacks this property). The 15N NMR‐relaxation data revealed (i) the presence of slow (microsecond‐to‐millisecond) timescale dynamics in the N‐terminal region (Cys1–Ser5) and core residues His17 and Asn26 and (ii) the presence of high frequency (nanosecond‐to‐picosecond) motions in the C‐terminal arm. Put together, the various results suggested that (i) the flexible C‐terminal of sCT (from Thr25–Thr31) is involved in identification of specific target receptors, (ii) whereas the N‐terminal of sCT (from Cys1–Gln20) in solution – exhibiting significant amount of conformational plasticity and strong bias towards biologically active α‐helical structure – facilitates favorable conformational adaptations while interacting with the intermembrane domains of these target receptors. Thus, we believe that the structural and dynamics features of sCT presented here will be useful guiding attributes for the rational design of biologically active sCT analogs. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号