首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   7篇
  2017年   1篇
  2014年   1篇
  2013年   3篇
  2012年   5篇
  2011年   2篇
  2010年   4篇
  2009年   3篇
  2008年   3篇
  2007年   1篇
  2006年   1篇
  2004年   2篇
  2001年   1篇
  1999年   2篇
  1998年   1篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1983年   1篇
  1982年   1篇
  1977年   1篇
排序方式: 共有39条查询结果,搜索用时 78 毫秒
1.
Force development in smooth muscle, as in skeletal muscle, is believed to reflect recruitment of force-generating myosin cross-bridges. However, little is known about the events underlying cross-bridge recruitment as the muscle cell approaches peak isometric force and then enters a period of tension maintenance. In the present studies on single smooth muscle cells isolated from the toad (Bufo marinus) stomach muscularis, active muscle stiffness, calculated from the force response to small sinusoidal length changes (0.5% cell length, 250 Hz), was utilized to estimate the relative number of attached cross-bridges. By comparing stiffness during initial force development to stiffness during force redevelopment immediately after a quick release imposed at peak force, we propose that the instantaneous active stiffness of the cell reflects both a linearly elastic cross-bridge element having 1.5 times the compliance of the cross-bridge in frog skeletal muscle and a series elastic component having an exponential length-force relationship. At the onset of force development, the ratio of stiffness to force was 2.5 times greater than at peak isometric force. These data suggest that, upon activation, cross-bridges attach in at least two states (i.e., low-force-producing and high-force-producing) and redistribute to a steady state distribution at peak isometric force. The possibility that the cross-bridge cycling rate was modulated with time was also investigated by analyzing the time course of tension recovery to small, rapid step length changes (0.5% cell length in 2.5 ms) imposed during initial force development, at peak force, and after 15 s of tension maintenance. The rate of tension recovery slowed continuously throughout force development following activation and slowed further as force was maintained. Our results suggest that the kinetics of force production in smooth muscle may involve a redistribution of cross-bridge populations between two attached states and that the average cycling rate of these cross-bridges becomes slower with time during contraction.  相似文献   
2.
Several procedures were used to disassemble rat liver rough microsomes (RM) into ribosomal subunits, mRNA, and ribosome-stripped membrane vesicles in order to examine the nature of the association between the mRNA of bound polysomes and the microsomal membranes. The fate of the mRNA molecules after ribosome release was determined by measuring the amount of pulse-labeled microsomal RNA in each fraction which was retained by oligo-dT cellulose or by measuring the poly A content by hybridization to radioactive poly U. It was found that ribosomal subunits and mRNA were simultaneously released from the microsomal membranes when the ribosomes were detached by: (a) treatment with puromycin in a high salt medium containing Mg++, (b) resuspension in a high salt medium lacking Mg++, and (c) chelation of Mg++ by EDTA or pyrophosphate. Poly A-containing mRNA fragments were extensively released from RM subjected to a mild treatment with pancreatic RNase in a medium of low ionic strength. This indicates that the 3' end of the mRNA is exposed on the outer microsomal surface and is not directly bound to the membranes. Poly A segments of bound mRNA were also accessible to [(3)H] poly U for in situ hybridization in glutaraldehyde-fixed RM. Rats were treated with drugs which inhibit translation after formation of the first peptide bonds or interfere with the initiation of protein synthesis. After these treatments inactive monomeric ribosomes, as well as ribosomes bearing mRNA, remained associated with their binding sites in microsomes prepared in media of low ionic strength. However, because there were no linkages provided by nascent chains, ribosomes, and mRNA, molecules were released from the microsomal membranes without the need of puromycin, by treatment with a high salt buffer containing Mg++. Thus, both in vivo and in vitro observations are consistent with a model in which mRNA does not contribute significantly to the maintenance of the interaction between bound polysomes and endoplasmic reticulum membranes in rat liver hepatocytes.  相似文献   
3.
By in vitro translation of mRNA’s isolated from free and membrane-bound polysomes, direct evidence was obtained for the synthesis of two lysosomal hydrolases, β-glucuronidase of the rat preputial gland and cathespin D of mouse spleen, on polysomes bound to rough endoplasmic reticulum (ER) membranes. When the mRNA’s for these two proteins were translated in the presence of microsomal membranes, the in vitro synthesized polypeptides were cotranslationally glycosylated and transferred into the microsomal lumen. Polypeptides synthesized in the absence of microsomal membranes were approximately 2,000 daltons larger than the respective unglycosylated microsomal polypeptides found after short times of labeling in cultured rat liver cells treated with tunicamycin. This strongly suggests that nascent chains of the lysosomal enzymes bear transient amino terminal signals which determine synthesis on bound polysomes and are removed during the cotranslational insertion of the polypeptides into the ER membranes. In the line of cultured rat liver cells used for this work, newly synthesized lysosomal hydrolases showed a dual destination; approximately 60 percent of the microsomal polypeptides detected after short times of labeling were subsequently processed proteolytically to lower molecular weight forms characteristic of the mature enzymes. The remainder was secreted from the cells without further proteolytic processing. As previously observed by other investigations in cultured fibroblasts (A. Gonzalez-Noriega, J.H. Grubbs, V. Talkad, and W.S. Sly, 1980, J Cell Biol. 85: 839-852; A. Hasilik and E.F. Neufeld, 1980, J. Biol. Chem., 255:4937-4945.) the lysosomotropic amine chloroquine prevented the proteolytic maturation of newly synthesized hydrolases and enhanced their section. In addition, unglycosylated hydrolases synthesized in cells treated with tunicamycin were exclusively exported from the cells without undergoing proteolytic processing. These results support the notions that modified sugar residues serve as sorting out signals which address the hydrolases to their lysosomal destination and that final proteolytic cleavage of hydrolase precursors take place within lysosome itself. Structural differences in the carbohydrate chains of intracellular and secreted precursors of cathespin D were detected from their differential sensitivity to digestion with endoglycosidases H and D. These observations suggest that the hydrolases exported into the medium follow the normal secretory route and that some of their oligosaccharides are subject to modifications known to affect many secretory glycoproteins during their passage through the Golgi apparatus.  相似文献   
4.
A critical role for mitochondrial dysfunction has been proposed in the pathogenesis of Down's syndrome (DS), a human multifactorial disorder caused by trisomy of chromosome 21, associated with mental retardation and early neurodegeneration. Previous studies from our group demonstrated in DS cells a decreased capacity of the mitochondrial ATP production system and overproduction of reactive oxygen species (ROS) in mitochondria. In this study we have tested the potential of epigallocatechin-3-gallate (EGCG) – a natural polyphenol component of green tea – to counteract the mitochondrial energy deficit found in DS cells. We found that EGCG, incubated with cultured lymphoblasts and fibroblasts from DS subjects, rescued mitochondrial complex I and ATP synthase catalytic activities, restored oxidative phosphorylation efficiency and counteracted oxidative stress. These effects were associated with EGCG-induced promotion of PKA activity, related to increased cellular levels of cAMP and PKA-dependent phosphorylation of the NDUFS4 subunit of complex I. In addition, EGCG strongly promoted mitochondrial biogenesis in DS cells, as associated with increase in Sirt1-dependent PGC-1α deacetylation, NRF-1 and T-FAM protein levels and mitochondrial DNA content.In conclusion, this study shows that EGCG is a promoting effector of oxidative phosphorylation and mitochondrial biogenesis in DS cells, acting through modulation of the cAMP/PKA- and sirtuin-dependent pathways. EGCG treatment promises thus to be a therapeutic approach to counteract mitochondrial energy deficit and oxidative stress in DS.  相似文献   
5.
The NDUFS4 subunit of complex I of the mammalian respiratory chain has a fully conserved carboxy-terminus with a canonical RVSTK phosphorylation site. Immunochemical analysis with specific antibodies shows that the serine in this site of the protein is natively present in complex I in both the phosphorylated and non-phosphorylated state. Two-dimensional IEF/SDS–PAGE electrophoresis, 32P labelling and immunodetection show that “in vitro” PKA phosphorylates the serine in the C-terminus of the NDUFS4 subunit in isolated bovine complex I. 32P labelling and TLC phosphoaminoacid mapping show that PKA phosphorylates serine and threonine residues in the purified heterologous human NDUFS4 protein.  相似文献   
6.
7.
Whilst parthenogenesis has evolved multiple times from sexual invertebrate and vertebrate lineages, the drivers and consequences of the sex-asex transition remain mostly uncertain. A model by Stouthamer et al. recently published in BMC Evolutionary Biology shows a pathway by which obligate asexuality could be selected for following endosymbiont infection.  相似文献   
8.
Evidence showing the existence in the inner compartment of rat-heart mitochondria of AKAP121 and associated PKA is presented. Immunoblotting analysis and trypsin digestion pattern show that 90% or more of mitochondrial C-PKA, R-PKA and AKAP121 is localized in the inner mitochondrial compartment, when prepared both from isolated mitochondria or cardiomyocyte cultures. This localization is verified by measurement of the specific catalytic activity of PKA, radiolabelling of R-PKA by (32)P-phosphorylated C-PKA and of AKAP by (32)P-phosphorylated R-PKA and electron microscopy of mitochondria exposed to gold-conjugated AKAP121 antibody.  相似文献   
9.

Aims

This study aimed at assessing whether patch type (i.e., under-shrub soil patch and inter-shrub soil patch) has an effect on soil microbes and how different shrub species altered the soil microbes through understanding soil microbial activity, biomass, and community structure.

Methods

We characterized the soil microbes in under-shrub and inter-shrub soil patches in three shrublands (Artemisia ordosica, Salix psammophila, and Caragana microphylla), respectively, in the Mu Us Desert, China, using microbial activity indicators, chloroform fumigation-extraction analysis, and high-throughput 16S rRNA gene sequencing.

Results

Members of the phyla Proteobacteria, Actinobacteria, Acidobacteria, Planctomycetes, Bacteroidetes, Chloroflexi, Firmicutes, and Gemmatimonadetes were dominant. Inter-shrub soil patch differed from under-shrub soil patch in soil bacterial composition, microbial enzyme activity, and biomass, but not in diversity. Soil collected in A. ordosica shrubland exhibited the highest microbial enzyme activity, biomass, and diversity. Shrub species had significant effects on community structure, primarily the relative abundance of Proteobacteria, Actinobacteria, and Bacteroidetes.

Conclusions

The results indicated that both shrub species and patch type had effects on soil microbial communities. In shrub-dominated desert ecosystems, spatial heterogeneity of soil nutrients and moisture might not be the main factors underlying variations in bacterial diversity. The different compositions of microbial communities in various shrublands provide a foundation for further research into the mechanisms of soil organic carbon accumulation.
  相似文献   
10.
This paper covers genetic and biochemical aspects of mitochondrial bioenergetics dysfunction in hereditary neurological disorders associated with complex I defects. Three types of hereditary complex I dysfunction are dealt with: (i) homozygous mutations in the nuclear genes NDUFS1 and NDUFS4 of complex I, associated with mitochondrial encephalopathy; (ii) a recessive hereditary epileptic neurological disorder associated with enhanced proteolytic degradation of complex I; (iii) homoplasmic mutations in the ND5 and ND6 mitochondrial genes of the complex, cohexistent with mutation in the nuclear PINK1 gene in familial Parkinsonism. The genetic and biochemical data examined highlight different mechanisms by which mitochondrial bioenergetics is altered in these hereditary defects of complex I. This knowledge, besides clarifying molecular aspects of the pathogenesis of hereditary diseases, can also provide hints for understanding the involvement of complex I in sporadic neurological disorders and aging, as well as for developing therapeutical strategies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号