首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   4篇
  84篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   3篇
  2013年   1篇
  2012年   3篇
  2011年   3篇
  2010年   2篇
  2009年   5篇
  2008年   6篇
  2007年   6篇
  2006年   7篇
  2005年   2篇
  2004年   4篇
  2003年   4篇
  2001年   6篇
  2000年   2篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1994年   1篇
  1993年   1篇
  1986年   1篇
  1983年   1篇
  1982年   1篇
  1979年   1篇
  1978年   1篇
  1977年   4篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1972年   1篇
  1971年   2篇
  1969年   1篇
排序方式: 共有84条查询结果,搜索用时 15 毫秒
1.
2.
As part of our interest into the bioinorganic chemistry of gallium, gallium(III) complexes of the peptide ligand N-(2-(4-imidazolyl)ethyl)pyridine-2-carboxamide (pypepH2) resembling a fragment of the metal-binding domain of bleomycins (BLMs), have been isolated. Reaction of pypepH2 with (Et4N)[GaCl4] and Ga(acac)3 [acac- is the acetylacetonate(-1) ion] affords the mononuclear complex [Ga(pypepH)2]Cl.2H2O (1) and the tetranuclear complex [Ga4(acac)4(pypep)4].4.4H2O (2), respectively. Both complexes were characterized by single-crystal X-ray crystallography, IR spectroscopy and thermal decomposition data. The pypepH- ion in 1 behaves as a N(pyridyl), N(deprotonated amide), N(pyridine-type imidazole) chelating ligand. The doubly deprotonated pypep2- ion in 2 behaves as a N(pyridyl), N(deprotonated amide), N(imidazolate), N'(imidazolate) mu2 ligand and binds to one Ga(III) atom at its pyridyl, amide and one of the imidazolate nitrogens, and to a second metal ion at the other imidazolate nitrogen; a chelating acac- ligand completes six coordination at each Ga(III) centre. The IR data are discussed in terms of the nature of bonding and known structures. The 1H NMR spectrum of 1 suggests that the cation of the complex maintains its integrity in dimethylsulfoxide (DMSO) solution. Complexes 1 and 2 are the first synthetic analogues of metallobleomycins with gallium(III).  相似文献   
3.
Novel oxorhenium and oxotechnetium complexes based on the tetradentate 1-(2-hydroxybenzamido)-2-(pyridinecarboxamido)benzene, H3L, ligand have been synthesized and characterized herein. Thus, by reacting equimolar quantities of the triply deprotonated ligand L3- with the suitable MO3+ precursor, the following neutral MOL complexes could be easily produced following similar synthetic routes: M = Re (1), M = 99gTc (2), and M = 99mTc (3). Complexes 1 and 2, prepared in macroscopic amounts, were chemically characterized and their structure determined by single-crystal X-ray analysis. They are isostructural metal chelates, adopting a distorted square pyramidal geometry around the metal. The N3O donor atom set of the tetradentate ligand defines the basal plane and the oxygen atom of the M = O core occupies the apex of the pyramid. Complex 3 forms quantitatively at tracer level by mixing the H3L ligand with Na99mTcO4 generator eluate in aqueous alkaline media and using tin chloride as reductant in the presence of citrate. Its structure was established by chromatographic comparison with prototypic complexes 1 and 2 using high-performance liquid chromatographic techniques. When challenged with excess glutathione in vitro, complex 3 is rapidly converted to hydrophilic unidentified metal species. Tissue distribution data after administration of complex 3 in vivo revealed a significant uptake and retention of this compound in brain tissue.  相似文献   
4.
Complex [Cr3O(O2CPh)6(MeOH)3](NO3) · 2MeOH (1 · 2MeOH) has been synthesized from the one-pot reaction between Cr(NO3)3 · 9H2O and NaO2CPh in MeOH. The structure of the complex has been solved by single-crystal X-ray crystallography. It crystallizes in the monoclinic space group P21/n with a=14.716(6) Å, b=22.569(8) Å, c=15.755(6) Å, β=95.02(1)°, V=5212.5(4) Å3 and Z=4. Although the cation does not possess any crystallographically imposed symmetry element, its {Cr33-O)} core is nearly symmetric. Each CrIII…CrIII vector is further bridged by two η112 benzoates, with a terminal MeOH molecule completing octahedral coordination at each metal ion. The crystal structure consists of layers that are parallel to (0 1 0) crystallographic plane and are formed through π-π stacking interactions and hydrogen bonds. Variable-temperature magnetic susceptibility and solid-state 1H NMR studies indicate that the total spin value of the ground state is 1/2. EPR experiments reveal the existence of a distribution of trimers with axial anisotropy in the g tensor.  相似文献   
5.
Zinc mononuclear complexes with the second-generation quinolone antibacterial drug enrofloxacin in the absence or presence of a nitrogen donor heterocyclic ligand 1,10-phenanthroline or 2,2′-bipyridine have been synthesized and characterized. Enrofloxacin is on deprotonated mode acting as a bidentate ligand coordinated to zinc ion through the ketone and a carboxylato oxygen atoms. The crystal structure of bis(enrofloxacinato)(1,10-phenanthroline)zinc(II), 2, has been determined by X-ray crystallography. The biological activity of the complexes has been evaluated by examining their ability to bind to calf-thymus DNA (CT DNA) with UV and fluorescence spectroscopies. UV studies of the interaction of the complexes with DNA have shown that they can bind to CT DNA and the DNA binding constants have been calculated. Competitive studies with ethidium bromide (EB) have shown that the complexes exhibit the ability to displace the DNA-bound EB indicating that they bind to DNA in strong competition with EB for the intercalative binding site. The complexes exhibit good binding propensity to human and bovine serum albumin proteins having relatively high binding constant values.  相似文献   
6.
The neutral mononuclear copper complexes with the quinolone antibacterial drug oxolinic acid in the presence or not of a nitrogen donor heterocyclic ligand 1,10-phenanthroline, 2,2'-bipyridine or 2,2'-dipyridylamine have been synthesized and characterized with infrared, UV-visible and electron paramagnetic resonance spectroscopies. The experimental data suggest that oxolinic acid acts as a deprotonated bidentate ligand and is coordinated to the metal ion through the pyridone and one carboxylate oxygen atoms. The crystal structure of (chloro)(1,10-phenanthroline)(oxolinato) copper(II), 2, has been determined with X-ray crystallography. For all complexes a distorted square pyramidal environment around Cu(II) is suggested. The EPR (electron paramagnetic resonance) behavior of 2 in aqueous solutions indicates mixture of dimeric and monomeric species. The investigation of the interaction of the complexes with calf-thymus DNA has been performed with diverse spectroscopic techniques and showed that the complexes are bound to calf-thymus DNA. The antimicrobial activity of the complexes has been tested on three different microorganisms. The complexes show a decreased biological activity in comparison to the free oxolinic acid.  相似文献   
7.
In a pH-specific fashion, V2O5, citric acid and H2O2 reacted at pH 5.5-6.0 and afforded a red crystalline product at 4 °C. Elemental analysis pointed to the molecular formulation . Complex 1 was further characterized by UV/Vis, FT-IR, NMR, cyclic voltammetry, and X-ray crystallography. The X-ray structure of 1 reveals two dinuclear vanadium-peroxo-citrate subunits, A and B, linked through a hydrogen bond. In both A and B, the citrate ligands have different protonation states, ultimately affording a pentagonal bipyramidal geometry around each V(V) ion. The peroxide ligands bind V(V) in a side-on fashion. pH-Dependent, non-thermal and thermal transformations of 1 unravel its connection with key participants in the vanadium-peroxo-citrate ternary system and project its association with other non-peroxo binary complexes of variable vanadium oxidation state, geometry, citrate binding mode and state of protonation. Overall, the surprising twist in the aqueous synthetic chemistry of the investigated ternary system: (a) projects a new pH structural variant (species A) as a component of the speciation; (b) provides an in-depth look at that speciation under specific pH conditions; and (c) offers significant insight into the aqueous structural speciation of vanadium with peroxide and citrate, and its potential relevance to biological processes.  相似文献   
8.

Background

Metastasis, the process whereby cancer cells spread, is in part caused by an incompletely understood interplay between cancer cells and the surrounding stroma. Gene expression studies typically analyze samples containing tumor cells and stroma. Samples with less than 50% tumor cells are generally excluded, thereby reducing the number of patients that can benefit from clinically relevant signatures.

Results

For a head-neck squamous cell carcinoma (HNSCC) primary tumor expression signature that predicts the presence of lymph node metastasis, we first show that reduced proportions of tumor cells results in decreased predictive accuracy. To determine the influence of stroma on the predictive signature and to investigate the interaction between tumor cells and the surrounding microenvironment, we used laser capture microdissection to divide the metastatic signature into six distinct components based on tumor versus stroma expression and on association with the metastatic phenotype. A strikingly skewed distribution of metastasis associated genes is revealed.

Conclusion

Dissection of predictive signatures into different components has implications for design of expression signatures and for our understanding of the metastatic process. Compared to primary tumors that have not formed metastases, primary HNSCC tumors that have metastasized are characterized by predominant down-regulation of tumor cell specific genes and exclusive up-regulation of stromal cell specific genes. The skewed distribution agrees with poor signature performance on samples that contain less than 50% tumor cells. Methods for reducing tumor composition bias that lead to greater predictive accuracy and an increase in the types of samples that can be included are presented.  相似文献   
9.
The aqueous chemistry of vanadium with physiologically relevant ligands constitutes a subject of burgeoning research, extending from bacterial metalloenzymic functions to human-health physiology. Vanadium, in the form of VCl3 and V2O5, reacted expediently with citric acid, in a 1:2 molar ratio in water at pH4, and, in the presence of various cations, afforded crystalline materials bearing the general formula (Cat)2[V2O4(C6H6O7)2nH2O (A) (Cat+=Na+, NH4 +, n=2; Me4N+, K+, n=4). Exploration of the reactivity of A toward H2O2 yielded the peroxo-containing complexes (Cat)2[V2O2(O2)2(C6H6O7)2]·2H2O (B) (Cat+=K+, NH4 +). Both classes of compounds were characterized analytically and spectroscopically. The X-ray structures of complexes A and B emphasize the exceptional stability of the dimeric rhombic unit V2O2, which is retained upon H2O2 reaction, and the preserved mode of coordination of the citrate ligand as a doubly deprotonated moiety. In these complexes, typical six and eight coordination numbers were observed for the Na+ and K+ counter-ions, respectively. The variety of synthetic approaches leading to A, along with the stepwise and direct assembly and isolation of peroxo-compounds (B), denotes the significance of reaction pathways and intermediates in vanadium(III–V)–citrate synthetic chemistry. Hence, a systematic investigation of reactivity modes in aqueous vanadium–citrate systems emerges as a crucial tool for the establishment of chemical interconnectivity among low MW complex species, potentially participating in the intricate biodistribution of that metal ion in biological fluids.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号