首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109篇
  免费   5篇
  国内免费   1篇
  2022年   1篇
  2021年   1篇
  2019年   2篇
  2017年   4篇
  2016年   3篇
  2015年   8篇
  2014年   1篇
  2013年   7篇
  2012年   8篇
  2011年   6篇
  2010年   2篇
  2009年   4篇
  2008年   6篇
  2007年   5篇
  2006年   3篇
  2005年   1篇
  2004年   3篇
  2003年   1篇
  2002年   4篇
  2001年   1篇
  2000年   5篇
  1999年   3篇
  1998年   3篇
  1997年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1990年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1983年   2篇
  1980年   1篇
  1976年   1篇
  1974年   2篇
  1973年   3篇
  1968年   1篇
  1966年   8篇
  1965年   2篇
  1964年   3篇
排序方式: 共有115条查询结果,搜索用时 15 毫秒
1.
2.
3.
The effect of lincocin (a plastid protein synthesis inhibitor) treatment on the greening process of bean (Phaseolus vulgaris L.) leaves have been studied. In comparison with control leaves treated ones had a decreased rate of chloroplast development. They had a marked chlorophyll deficiency and a decreased chlorophyll a/b ratio. Some long and short wavelength forms of chlorophyll a were lacking as evidenced from the absorption spectra at 25°C and the fluorescence spectra at 77°K. The –14CO2 fixation was inhibited by 80–90% in treated leaves. The fluorescence induced by the measuring light was greater in the treated leaves than in the control ones, and the kinetics of the decline of the relative fluorescence intensity were also different. Electron microscopic studies showed macrogranum-like structures and incomplete membrane vesicles in the treated plastids. After longer treatment a destruction of membranes was observed. The results indicate some structural and functional membrane deficiencies and instability of the membranes.  相似文献   
4.
Summary

The larval development of the ophiocomid ophiuroid Ophiomastix venosais described using SEM. The gastrula transforms into a uniformly ciliated early larva which progressively changes into a lecithotrophic late premetamorphic larva with a continuous bilateral ciliated band. This stage is short-lived and equivalent to a highly reduced ophiopluteus. Comparisons between O. venosa and other ophiuroid species whose development has been investigated suggest that, whatever the developmental mode (lecithotrophic or planktotrophic), a pluteus stage always occurs in ophiuroids with planktonic development. Two metamorphic stages were identified, the late metamorphic larva differing from the early one by the closure of the larval mouth. The appearance of the permanent mouth marks the end of the metamorphosis. The postlarva still possesses remnants of larval features. The transformation of the reduced ophiopluteus into a barrel-shaped metamorphic larva with transverse ciliated bands, a vitellaria larva, is followed. The possible occurrence of a unique type of metamorphic larva in non-brooding ophiuroids is discussed. Verification of this, however, needs further SEM investigations on metamorphic larva from species having “regular” planktotrophic development.  相似文献   
5.
Membrane protein (MP) complexes play key roles in all living cells. Their structural characterisation is hampered by difficulties in purifying and crystallising them. Recent progress in electron microscopy (EM) have revolutionised the field, not only by providing higher-resolution structures for previously characterised MPs but also by yielding first glimpses into the structure of larger and more challenging complexes, such as bacterial secretion systems. However, the resolution of pioneering EM structures may be difficult and their interpretation requires clues regarding the overall organisation of the complexes. In this context, we present BAmSA, a new method for localising transmembrane (TM) regions in MP complexes, using a general procedure that allows tagging them without resorting to neither genetic nor chemical modification. Labels bound to TM regions can be visualised directly on raw negative-stain EM images, on class averages, or on three-dimensional reconstructions, providing a novel strategy to explore the organisation of MP complexes.  相似文献   
6.
7.
8.
9.
Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae), one of the most economically important agricultural pests worldwide, is the vector of cassava mosaic geminiviruses that cause cassava mosaic disease (CMD). In East and Central Africa, a severe CMD pandemic that spread from Uganda in the late 1980s still continues to devastate cassava crops. To assess the association of distinct B. tabaci genetic groups with the CMD pandemic, mitochondrial cytochrome oxidase I gene sequences were analysed from whiteflies collected during surveys conducted from 2010 to 2013 in Tanzania. Four genetic groups – Sub‐Saharan Africa 1 (SSA1), Mediterranean, Indian Ocean and East Africa 1, and a group of unknown whitefly species were identified. SSA1 comprised four subgroups: SSA1‐SG1, SSA1‐SG2, SSA1‐SG1/2 and SSA1‐SG3. SSA1‐SG1 was confined to the pandemic‐affected north‐western parts of Tanzania whilst SSA1‐SG2 and SSA1‐SG3 were found in the central and eastern parts not yet affected by the pandemic. The CMD pandemic front was estimated to lie in Geita Region, north‐western Tanzania, and to be spreading south‐east at a rate of ca 26 km/year. The pandemic‐associated B. tabaci SSA1‐SG1 predominated up to 180 km ahead of the CMD front indicating that changes in whitefly population characteristics precede changes in disease characteristics.  相似文献   
10.
All Bemisia tabaci individuals harbour an obligate bacterial symbiont (Portiera aleyrodidarum), and many also harbour non‐essential facultative symbionts. The association of symbiotic bacteria with the various genetic groups of B. tabaci remains unknown for East Africa. This study aimed to assess any association between the various whitefly genetic groups and the endosymbionts they harbour; to investigate if a unique endosymbiont is associated with super‐abundant whiteflies, and to provide baseline information on endosymbionts of whiteflies for a part of East Africa. Whiteflies collected during surveys in Tanzania were genotyped and screened for the presence of the obligate and six secondary symbionts (SS): Rickettsia (R), Hamiltonella (H), Arsenophonus (A), Wolbachia (W), Cardinium (C) and Fritschea (F). The results revealed the presence of Mediterranean (MED), East Africa 1 (EA1), Indian Ocean (IO) and Sub‐Saharan Africa 1 (SSA1) genetic groups of Bemisia tabaci, with SSA1 further clustered into four sub‐groups: SSA1‐SG1, SSA1‐SG2, SSA1‐SG1/2 and SSA1‐SG3. F was completely absent from all of the whiteflies tested while R was always found in double or multiple infections. In general, no particular symbiont appeared to be associated with the super‐abundant SSA1‐SG1 B. tabaci, although A or AC infections were common among infected individuals. The most striking feature of these super‐abundant whiteflies, dominating cassava mosaic disease pandemic areas, was the high prevalence of individuals uninfected by any of the six SS tested. This study of the endosymbionts of B. tabaci in East Africa showed contrasting patterns of infection in crop and weed hosts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号