首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2019年   1篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
Ecosystems - Forest ecosystems worldwide are subjected to human-induced stressors, including eutrophication and acidification, and to natural disturbances (for example, insect infestation,...  相似文献   
2.
Geochemistry often reveals unexpected (anti)correlations. Arsenic (As) and selenium (Se) are cases in point. We explore the hypothesis that bacteria living in an As-replete environment recruited a biological process involving Se and sulfur to fulfil their need for As detoxification. In analogy with the formation of arsenolipids and arsenosugars, which are common non-toxic As metabolites derived from microbial and plant metabolism, we attempt to explain the prevalence of novel sulfur-containing As derivatives, in particular monothioarsenate, in the aqueous environment. Thiolated-As species have been overlooked so far mainly because of the difficulty of their identification. Based on comparative genomics, we propose a scenario where SelD and SelU proteins, commonly used to make selenophosphate and modify transfer RNA, have been recruited to make monothioarsenate, a relatively innocuous arsenical. This hypothesis is discussed in terms of the relative geochemical distribution of Se and As.  相似文献   
3.
4.
Microcosms containing sediment from an aquifer in Cambodia with naturally elevated levels of arsenic in the associated groundwater were used to evaluate the effectiveness of microbially mediated production of iron minerals for in situ As remediation. The microcosms were first incubated without amendments for 28 days, and the release of As and other geogenic chemicals from the sediments into the aqueous phase was monitored. Nitrate or a mixture of sulfate and lactate was then added to stimulate biological Fe(II) oxidation or sulfate reduction, respectively. Without treatment, soluble As concentrations reached 3.9 ± 0.9 μM at the end of the 143-day experiment. However, in the nitrate- and sulfate-plus-lactate-amended microcosms, soluble As levels decreased to 0.01 and 0.41 ± 0.13 μM, respectively, by the end of the experiment. Analyses using a range of biogeochemical and mineralogical tools indicated that sorption onto freshly formed hydrous ferric oxide (HFO) and iron sulfide mineral phases are the likely mechanisms for As removal in the respective treatments. Incorporation of the experimental results into a one-dimensional transport-reaction model suggests that, under conditions representative of the Cambodian aquifer, the in situ precipitation of HFO would be effective in bringing groundwater into compliance with the World Health Organization (WHO) provisional guideline value for As (10 ppb or 0.13 μM), although soluble Mn release accompanying microbial Fe(II) oxidation presents a potential health concern. In contrast, production of biogenic iron sulfide minerals would not remediate the groundwater As concentration below the recommended WHO limit.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号