首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   1篇
  2022年   1篇
  2019年   2篇
  2016年   2篇
  2015年   3篇
  2014年   3篇
  2013年   6篇
  2012年   3篇
  2011年   4篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2006年   3篇
  2005年   4篇
  2004年   1篇
  2003年   3篇
  2002年   2篇
  2000年   1篇
  1999年   2篇
  1997年   1篇
  1995年   2篇
  1993年   1篇
  1992年   4篇
  1990年   1篇
  1989年   2篇
  1986年   1篇
  1984年   1篇
  1980年   1篇
  1976年   1篇
  1974年   3篇
  1973年   2篇
排序方式: 共有66条查询结果,搜索用时 281 毫秒
1.
Summary The membranes of the microvilli of UV- and green-photoreceptors of the ant Myrmecia gulosa have been studied with the freeze-fracture technique. Both inner fracture faces, the cytoplasmic P-face and the extracellular E-face, are covered by globular particles. The P-face particles appear to be randomly distributed, occasionally forming clusters. Their density is about 7,000/m2, and their mean diameter is 8.5 nm. The E-face particles, however, are arranged in an ordered square pattern with a center-to-center spacing of 9 nm. The density and distribution of P- and E-face particles are the same in both the UV- and the green-photoreceptor membranes. No differences were found in the ultrastructural organization of photoreceptor membranes after dark or light adaptation. It is suggested that the P-face particles represent rhodopsin molecules.  相似文献   
2.
Honeybees, like other insects, accumulate electric charge in flight, and when their body parts are moved or rubbed together. We report that bees emit constant and modulated electric fields when flying, landing, walking and during the waggle dance. The electric fields emitted by dancing bees consist of low- and high-frequency components. Both components induce passive antennal movements in stationary bees according to Coulomb''s law. Bees learn both the constant and the modulated electric field components in the context of appetitive proboscis extension response conditioning. Using this paradigm, we identify mechanoreceptors in both joints of the antennae as sensors. Other mechanoreceptors on the bee body are potentially involved but are less sensitive. Using laser vibrometry, we show that the electrically charged flagellum is moved by constant and modulated electric fields and more strongly so if sound and electric fields interact. Recordings from axons of the Johnston organ document its sensitivity to electric field stimuli. Our analyses identify electric fields emanating from the surface charge of bees as stimuli for mechanoreceptors, and as biologically relevant stimuli, which may play a role in social communication.  相似文献   
3.
In honeybees (Apis mellifera), the biogenic amine octopamine has been shown to play a role in associative and non-associative learning and in the division of labour in the hive. Immunohistochemical studies indicate that the ventral unpaired median (VUM) neurones in the suboesophageal ganglion (SOG) are putatively octopaminergic and therefore might be involved in the octopaminergic modulation of behaviour. In contrast to our knowledge about the behavioural effects of octopamine, only one neurone (VUMmx1) has been related to a behavioural effect (the reward function during olfactory learning). In this study, we have investigated suboesophageal VUM neurones with fluorescent dye-tracing techniques and intracellular recordings combined with intracellular staining. Ten different VUM neurones have been found including six VUM neurones innervating neuropile regions of the brain and the SOG exclusively (central VUM neurones) and four VUM neurones with axons in peripheral nerves (peripheral VUM neurones). The central VUM neurones innervate the antennal lobes, the protocerebral lobes (including the lateral horn) and the mushroom body calyces. Of these, a novel mandibular VUM neurone, VUMmd1, exhibits the same branching pattern in the brain as VUMmx1 and responds to sucrose and odours in a similar way. The peripheral VUM neurones innervate the antennal and the mandibular nerves. In addition, we describe one labial unpaired median neurone with a dorsal cell body, DUMlb1. The possible homology between the honeybee VUM neurones and the unpaired median neurones in other insects is discussed. This work was supported by the DFG ME 365/24-2.  相似文献   
4.
Despite several recent analyses on the phylogeny of Neuroptera some questions still remain to be answered. In the present analysis we address these questions by exploring a hitherto unexplored character complex: the tentorium, the internal cuticular support structure of the insect head. We described in detail the tentoria of representatives of all extant neuropteran families and the muscles originating on the tentorium using 3D microCT images and analyzed differences in combination with a large published matrix based on larval characters. We find that the tentorium and associated musculature are a source of phylogenetically informative characters. The addition of the tentorial characters to the larval matrix causes a basad shift of the Sisyridae and clearly supports a clade of all Neuroptera except Sisyridae and Nevrorthidae. A sister group relationship of Coniopterygidae and the dilarid clade is further corroborated. A general trend toward a reduction of the dorsal tentorial arms and the development of laminatentoria is observed. In addition to the phylogenetic analysis, a correlation among the feeding habits, the development of the maxillary muscles, and the laminatentoria is demonstrated.  相似文献   
5.

Background

A longstanding debate in allergy is whether or not specific immunoglobulin-E antibodies (sIgE), recognizing cross-reactive carbohydrate determinants (CCD), are able to elicit clinical symptoms. In pollen and food allergy, ≥20% of patients display in-vitro CCD reactivity based on presence of α1,3-fucose and/or β1,2-xylose residues on N-glycans of plant (xylose/fucose) and insect (fucose) glycoproteins. Because the allergenicity of tomato glycoallergen Lyc e 2 was ascribed to N-glycan chains alone, this study aimed at evaluating clinical relevance of CCD-reduced foodstuff in patients with carbohydrate-specific IgE (CCD-sIgE).

Methodology/Principal Findings

Tomato and/or potato plants with stable reduction of Lyc e 2 (tomato) or CCD formation in general were obtained via RNA interference, and gene-silencing was confirmed by immunoblot analyses. Two different CCD-positive patient groups were compared: one with tomato and/or potato food allergy and another with hymenoptera-venom allergy (the latter to distinguish between CCD- and peptide-specific reactions in the food-allergic group). Non-allergic and CCD-negative food-allergic patients served as controls for immunoblot, basophil activation, and ImmunoCAP analyses. Basophil activation tests (BAT) revealed that Lyc e 2 is no key player among other tomato (glyco)allergens. CCD-positive patients showed decreased (re)activity with CCD-reduced foodstuff, most obvious in the hymenoptera venom-allergic but less in the food-allergic group, suggesting that in-vivo reactivity is primarily based on peptide- and not CCD-sIgE. Peptide epitopes remained unaffected in CCD-reduced plants, because CCD-negative patient sera showed reactivity similar to wild-type. In-house-made ImmunoCAPs, applied to investigate feasibility in routine diagnosis, confirmed BAT results at the sIgE level.

Conclusions/Significance

CCD-positive hymenoptera venom-allergic patients (control group) showed basophil activation despite no allergic symptoms towards tomato and potato. Therefore, this proof-of-principle study demonstrates feasibility of CCD-reduced foodstuff to minimize ‘false-positive results’ in routine serum tests. Despite confirming low clinical relevance of CCD antibodies, we identified one patient with ambiguous in-vitro results, indicating need for further component-resolved diagnosis.  相似文献   
6.
7.
During hemostasis the zymogen factor X (FX) is converted into its enzymatically active form factor Xa by the intrinsic FX-activating complex. This complex consists of the protease factor IXa (FIXa) that assembles, together with its cofactor, factor VIIIa, on a phospholipid surface. We have studied the functional properties of a FIXa-specific monoclonal antibody, 224AE3, which has the potential to enhance intrinsic FX activation. Binding of the antibody to FIXa improved the catalytic properties of the intrinsic FX-activating complex in two ways: (i) factor VIIIa bound to the FIXa-antibody complex with a more than 18-fold higher affinity than to FIXa, and (ii) the turnover number (kcat) of the enzyme complex increased 2- to 3-fold whereas the Km for FX remained unaffected. The ability of 224AE3 to increase the FXa-generation potential (called the "booster effect") was confirmed in factor VIII (FVIII)-depleted plasma, which was supplemented with different amounts of recombinant FVIII. In the presence of antibody 224AE3 the coagulant activity was increased 2-fold at physiological FVIII concentration and up to 15-fold at low FVIII concentrations. The booster effect that we describe demonstrates the ability of antibodies to function as an additional cofactor in an enzymatic reaction and might open up a new principle for improving the treatment of hemophilia.  相似文献   
8.
9.
Worker honeybees proceed through a sequence of tasks, passing from hive and guard duties to foraging activities. The underlying neuronal changes accompanying and possibly mediating these behavioral transitions are not well understood. We studied changes in the microglomerular organization of the mushroom bodies, a brain region involved in sensory integration, learning, and memory, during adult maturation. We visualized the MB lips' microglomerular organization by applying double labeling of presynaptic projection neuron boutons and postsynaptic Kenyon cell spines, which form microglomerular complexes. Their number and density, as well as the bouton volume, were measured using 3D-based techniques. Our results show that the number of microglomerular complexes and the bouton volumes increased during maturation, independent of environmental conditions. In contrast, manipulations of behavior and sensory experience caused a decrease in the number of microglomerular complexes, but an increase in bouton volume. This may indicate an outgrowth of synaptic connections within the MB lips during honeybee maturation. Moreover, manipulations of behavioral and sensory experience led to adaptive changes, which indicate that the microglomerular organization of the MB lips is not static and determined by maturation, but rather that their organization is plastic, enabling the brain to retain its synaptic efficacy.  相似文献   
10.
 The present study was conducted to investigate the distribution and immunohistochemical characteristics of ascending and descending projection neurons of the rat superior olivary complex (SOC), a group of interrelated brainstem nuclei. Ascending neurons were identified by injection of cholera toxin B subunit (CTB) into the central nucleus of the inferior colliculus (IC), descending neurons were labeled by application of Fluoro-Gold (FG) into the scala tympani of the cochlea, ipsilaterally to the IC injection. In accordance with the literature, we observed neurons innervating the IC located in the lateral superior olivary nucleus (LSO) and dorsal periolivary groups (DPO) on both sides, in the superior paraolivary nucleus (SPO) predominantly ipsilateral, as well as in the ipsilateral medial superior olivary nucleus (MSO) and the medial nucleus of the trapezoid body (MNTB). Cochlear projection neurons were found predominantly in the ipsilateral LSO as well as in the bilateral SPO, DPO, MSO and MNTB. In addition, a considerable population of neurons in the ipsilateral LSO and SPO were identified as being both ascending and descending. To further characterize these double-projecting neurons, brainstem sections were incubated in antisera directed against different neuroactive substances. The majority of ascending/descending cells in the LSO contained calcitonin gene-related peptide, but not substance P (SP), met-enkephalin (ENK) or tyrosine hydroxylase (TH). Some of these neurons apparently were contacted by ENK- or SP-immunoreactive fibers and terminals. In addition, we found TH-immunoreactive neurons in the lateral MNTB region. These neurons, which were labeled upon tracer injection into the cochlea (but not upon IC injection), probably belong to the C1 catecholaminergic cell group and may represent a division of the uncrossed olivocochlear bundle. The present results reveal the existence of a previously unknown subpopulation of SOC neurons that project to both the cochlea and the inferior colliculus. Their CGRP immunoreactivity and their uncrossed projection pattern provide evidence that they may belong to the cholinergic, putatively excitatory cell group. Received: 4 January 1999 / Accepted: 17 February 1999  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号