首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   6篇
  2024年   1篇
  2020年   1篇
  2015年   2篇
  2014年   1篇
  2013年   3篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2007年   1篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1988年   2篇
  1987年   4篇
  1986年   3篇
  1985年   4篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   3篇
  1980年   2篇
  1979年   3篇
  1977年   3篇
  1976年   1篇
  1974年   1篇
  1972年   1篇
  1968年   1篇
排序方式: 共有66条查询结果,搜索用时 15 毫秒
1.
2.
To test the hypothesis that occlusive apneas result from sleep-induced periodic breathing in association with some degree of upper airway compromise, periodic breathing was induced during non-rapid-eye-movement (NREM) sleep by administering hypoxic gas mixtures with and without applied external inspiratory resistance (9 cmH2O X l-1 X s) in five normal male volunteers. In addition to standard polysomnography for sleep staging and respiratory pattern monitoring, esophageal pressure, tidal volume (VT), and airflow were measured via an esophageal catheter and pneumotachograph, respectively, with the latter attached to a tight-fitting face mask, allowing calculation of total pulmonary system resistance (Rp). During stage I/II NREM sleep minimal period breathing was evident in two of the subjects; however, in four subjects during hypoxia and/or relief from hypoxia, with and without added resistance, pronounced periodic breathing developed with waxing and waning of VT, sometimes with apneic phases. Resistive loading without hypoxia did not cause periodicity. At the nadir of periodic changes in VT, Rp was usually at its highest and there was a significant linear relationship between Rp and 1/VT, indicating the development of obstructive hypopneas. In one subject without added resistance and in the same subject and in another during resistive loading, upper airway obstruction at the nadir of the periodic fluctuations in VT was observed. We conclude that periodic breathing resulting in periodic diminution of upper airway muscle activity is associated with increased upper airway resistance that predisposes upper airways to collapse.  相似文献   
3.
Although the technique of S1 mapping is a powerful analytical tool for the analysis of RNA, we now report a surprising complication involving a trimolecular hybrid between two RNA species and a single DNA probe molecule which, if unrecognized, can lead to misleading interpretations. We document that such trimolecular hybrids can be efficiently formed under some hybridization conditions and that the probe DNA sequence at the junction of the two RNA molecules can be remarkably stable to digestion with S1. Trimolecular hybrids can arise in any instance whenever a distal region of an end-labeled DNA probe is homologous to a moderately abundant RNA in the sample to be analyzed. This situation presents a serious, potential complication for a variety of S1 analyses, particularly those in which DNA transfection has been utilized to reintroduce in vitro-engineered genes into cultured animal cells.  相似文献   
4.
To study the dynamics of respiratory drive and pressure in patients with occlusive apneas, diaphragmatic electromyogram (EMGdi), esophageal pressure (Pes), and genioglossal electromyogram (EMGge) were monitored during nocturnal sleep in five patients. Both EMGs were analyzed as peak moving time average, and Pes was quantitated as the peak inspiratory change from base line. During the ventilatory phase both EMGs decreased proportionally. The decrease in Pes was less than the decrease observed in EMGdi, and Pes generated for a given EMGdi increased during the preapneic phase in spite of the proportional decrease in EMGdi and EMGge during this period. We conclude that negative inspiratory pressures which lead to the passive collapse of oropharyngeal walls are dependent on both respiratory and upper airway muscle activity and that occlusive apneas of non-rapid-eye-movement (NREM) sleep do occur in spite of proportional changes observed in the activity of both muscle groups. The preapneic increase in negative inspiratory pressures generated for a given respiratory muscle activity is most likely due to the decrease in upper airway muscle activity that is associated with an increase in oropharyngeal resistance.  相似文献   
5.
A partial library of cloned human DNA was screened for sequences represented on and specific to the X chromosome. The library was constructed from Bam HI-digested human DNA from cells with X chromosome polyploidy, and was cloned in pBR322. The screening was performed by individually hybridizing 32P-labeled cloned plasmids to Southern blots containing Bam HI-digested DNA from mouse-human hybrid cells having the human X chromosome and from derivative hybrids lacking the human X. Of 45 clones assayed, 33 contained sequences homologous to ones represented many times on the X. In situ hybridization to metaphase chromosomes demonstrated that at least four of these clones were homologous to autosomes as well. Only one of the 18 clones of this kind tested cross-hybridized with another. Two recombinant plasmids were shown to be derived from the X chromosome and to be X chromosome-specific by three criteria: they hybridized to a single band in the Southern blots of Bam HI-digested DNA from hybrid cells containing the X chromosome; they hybridized to a band of the same molecular weight as did the inserted DNA fragment; and they showed a dosage effect when hybridized to Southern blots of Bam HI-digested DNA from XY and XXX cells. One of these hybridized as a single-copy or low-order reiterated sequence in a Cot analysis using male DNA as driver. Our methods can be applied to the identification of any chromosome-specific clone. The two X-specific clones identified here should be useful in investigating the mechanism of X inactivation and in isolating a Barr body.  相似文献   
6.
To determine upper airway and respiratory muscle responses to nasal continuous negative airway pressure (CNAP), we quantitated the changes in diaphragmatic and genioglossal electromyographic activity, inspiratory duration, tidal volume, minute ventilation, and end-expiratory lung volume (EEL) during CNAP in six normal subjects during wakefulness and five during sleep. During wakefulness, CNAP resulted in immediate increases in electromyographic diaphragmatic and genioglossal muscle activity, and inspiratory duration, preserved or increased tidal volume and minute ventilation, and decreased EEL. During non-rapid-eye-movement and rapid-eye-movement sleep, CNAP was associated with no immediate muscle or timing responses, incomplete or complete upper airway occlusion, and decreased EEL. Progressive diaphragmatic and genioglossal responses were observed during non-rapid-eye-movement sleep in association with arterial O2 desaturation, but airway patency was not reestablished until further increases occurred with arousal. These results indicate that normal subjects, while awake, can fully compensate for CNAP by increasing respiratory and upper airway muscle activities but are unable to do so during sleep in the absence of arousal. This sleep-induced failure of load compensation predisposes the airways to collapse under conditions which threaten airway patency during sleep. The abrupt electromyogram responses seen during wakefulness and arousal are indicative of the importance of state effects, whereas the gradual increases seen during sleep probably reflect responses to changing blood gas composition.  相似文献   
7.
Species identification based on biochemical and molecular techniques has a broad range of applications. These include compliance enforcement, the management and conservation of marine organisms, and commercial quality control. Abalone poaching worldwide and illegal trade in abalone products have increased mainly because of the attractive prices obtained and caused a sharp decline in stocks. Alleged poachers have been acquitted because of lack of evidence to correctly identify species. Therefore, a robust method is required that would identify tissue of abalone origin to species level. The aim of this study was to develop immunologic techniques, using monoclonal and polyclonal antibodies, to identify 10 different abalone species and subspecies from South Africa, the United States, Australia, and Japan. The combination of 3 developed monoclonal antibodies to South African abalone (Haliotis midae) enabled differentiation between most of the 10 species including the subspecies H. diversicolor supertexta and H. diversicolor diversicolor. In a novel approach, using antibodies of patients with allergy to abalone, the differentiation of additional subspecies, H. discus discus and H. discus hannai, was possible. A field-based immunoassay was developed to identify confiscated tissue of abalone origin.  相似文献   
8.
In the presence of ATP and Mg(2+), the bacterial transposon Tn7 translocates via a cut and paste mechanism executed by the transposon-encoded proteins TnsA+TnsB+TnsC+TnsD. We report here that in the presence of Mn(2+), TnsA+TnsB alone can execute the DNA breakage and joining reactions of Tn7 recombination. ATP is not essential in this minimal system, revealing that this cofactor is not directly involved in the chemical steps of recombination. In both the TnsAB and TnsABC+D systems, recombination initiates with double-strand breaks at each transposon end that cut Tn7 away from flanking donor DNA. In the minimal system, breakage occurs predominantly at a single transposon end and the subsequent end-joining reactions are intramolecular, with the exposed 3' termini of a broken transposon end joining near the other end of the Tn7 element in the same donor molecule to form circular transposon species. In contrast, in TnsABC+D recombination, breaks occur at both ends of Tn7 and the two ends join to a target site on a different DNA molecule to form an intermolecular simple insertion. This demonstration of the capacity of TnsAB to execute breakage and joining reactions supports the view that these proteins form the Tn7 transposase.  相似文献   
9.
10.
Pulse-labeling studies demonstrate that tubulin synthesized in the neuron cell body (soma) moves somatofugally within the axon (at a rate of several millimeters per day) as a well-defined wave corresponding to the slow component of axonal transport. A major goal of the present study was to determine what proportion of the tubulin in mature motor axons is transported in this wave. Lumbar motor neurons in 9-wk-old rats were labeled by injecting [35S]methionine into the spinal cord 2 wk after motor axons were injured (axotomized) by crushing the sciatic nerve. Immunoprecipitation with mAbs which recognize either class II or III beta-tubulin were used to analyze the distributions of radioactivity in these isotypes in intact and axotomized motor fibers 5 d after labeling. We found that both isotypes were associated with the slow component wave, and that the leading edge of this wave was enriched in the class III isotype. Axotomy resulted in significant increases in the labeling and transport rates of both isotypes. Immunohistochemical examination of peripheral nerve fibers demonstrated that nearly all of the class II and III beta-tubulin in nerve fibers is located within axons. Although the amounts of radioactivity per millimeter of nerve in class II and III beta-tubulin were significantly greater in axotomized than in control nerves (with increases of +160% and +58%, respectively), immunoassay revealed no differences in the amounts of these isotypes in axotomized and control motor fibers. We consider several explanations for this paradox; these include the possibility that the total tubulin content is relatively insensitive to changes in the amount of tubulin transported in the slow component wave because this wave represents the movement of only a small fraction of the tubulin in these motor fibers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号