首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2222篇
  免费   212篇
  国内免费   234篇
  2668篇
  2024年   13篇
  2023年   51篇
  2022年   98篇
  2021年   155篇
  2020年   110篇
  2019年   112篇
  2018年   120篇
  2017年   90篇
  2016年   127篇
  2015年   174篇
  2014年   201篇
  2013年   183篇
  2012年   196篇
  2011年   188篇
  2010年   96篇
  2009年   107篇
  2008年   119篇
  2007年   103篇
  2006年   85篇
  2005年   85篇
  2004年   63篇
  2003年   37篇
  2002年   36篇
  2001年   13篇
  2000年   7篇
  1999年   15篇
  1998年   9篇
  1997年   9篇
  1996年   3篇
  1995年   15篇
  1994年   6篇
  1993年   9篇
  1992年   8篇
  1991年   1篇
  1990年   3篇
  1989年   2篇
  1988年   5篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
排序方式: 共有2668条查询结果,搜索用时 0 毫秒
1.
Caspase-2 (casp-2) is the most conserved caspase across species, and is one of the initiator caspases activated by various stimuli. The casp-2 gene produces several alternative splicing isoforms. It is believed that the long isoform, casp-2L, promotes apoptosis, whereas the short isoform, casp-2S, inhibits apoptosis. The actual effect of casp-2S on apoptosis is still controversial, however, and the underlying mechanism for casp-2S-mediated apoptosis inhibition is unclear. Here, we analyzed the effects of casp-2S on DNA damage induced apoptosis through “gain-of-function” and “loss-of-function” strategies in ovarian cancer cell lines. We clearly demonstrated that the over-expression of casp-2S inhibited, and the knockdown of casp-2S promoted, the cisplatin-induced apoptosis of ovarian cancer cells. To explore the mechanism by which casp-2S mediates apoptosis inhibition, we analyzed the proteins which interact with casp-2S in cells by using immunoprecipitation (IP) and mass spectrometry. We have identified two cytoskeleton proteins, Fodrin and α-Actinin 4, which interact with FLAG-tagged casp-2S in HeLa cells and confirmed this interaction through reciprocal IP. We further demonstrated that casp-2S (i) is responsible for inhibiting DNA damage-induced cytoplasmic Fodrin cleavage independent of cellular p53 status, and (ii) prevents cisplatin-induced membrane blebbing. Taken together, our data suggests that casp-2S affects cellular apoptosis through its interaction with membrane-associated cytoskeletal Fodrin protein.  相似文献   
2.
Polypeptide growth factors that stimulate cell proliferation bind to cell surface receptors and activate intracellular signal transduction pathways. One major signalling pathway, initiated by phosphatidylinositol (PI) turnover, involves activation of protein kinase C. Some polypeptide growth factors, including mitogens that activate protein kinase C, induce a rapid increase in expression of the proto-oncogenes, c-myc and c-fos. In order to characterize the signal transduction pathways responsible for proto-oncogene activation, we treated Swiss 3T3 cells with the tumor promoter phorbol dibutyrate to generate cells deficient in protein kinase C. These cells were then stimulated with platelet extract, bombesin, or epidermal growth factor (EGF) and the levels of c-myc and c-fos mRNA were determined. Platelet extract or bombesin, which stimulate PI turnover, were substantially weaker inducers of c-myc and c-fos mRNA levels in the protein kinase C-depleted cells, although some variability with platelet extract was noted. EGF, which does not stimulate PI turnover in several cell systems, was by contrast a potent inducer of both proto-oncogenes whether or not the cells were deficient in protein kinase C. Pretreatment of cells with phorbol dibutyrate caused little or no change in the basal levels of c-myc or c-fos mRNA, but led to a small but significant increase in basal levels of ornithine decarboxylase mRNA. These results demonstrate that EGF and growth factors that activate PI turnover induce expression of the c-myc and c-fos proto-oncogenes through different pathways.  相似文献   
3.
ATPase activity was studied in plasma membrane-enriched fractions prepared from cultured Citrus sinensis L. cv. Osbeck cells. In general, properties of the plasma membrane ATPase from cultured cells, such as optimal pH and temperature. Vmax and Km were similar to those already observed in higher plants. The effects of high salt concentrations on ATPase activity were studied in membrane fractions derived from salt-sensitive and salt-tolerant cells grown in the presence or absence of salt. NaCl did not have an in vivo effect on Vmax and the apparent Km value for ATP. However, high concentrations of NaCl, or KCl, added in vitro, induced cooperativity in the enzyme and reduced the affinity of the enzyme for its substrate. Isoosmolar concentrations of sucrose or choline chloride failed to do so. Our results suggest that the plasma membrane ATPase of Citrus cells has more than one substrate-binding site on the native form of the enzyme which interact in the presence of salt and act independently in its absence.  相似文献   
4.
本课题合成四个氮基三乙酸单酰苯胺(IDA)类及其类似物肝胆显像螯合物。(1)用家兔做了肝胆显像扫描实验,其显像效果较好。(2)~(3)为未见报道的化合物。  相似文献   
5.
In recent years, black ginseng, a new type of processed ginseng product, has attracted the attention of scholars globally. Ginsenoside and ginseng polysaccharide, the main active substances of black ginseng, have been shown to carry curative effects for many diseases. This article focuses on the mechanism of their action in anti-inflammatory response, which is mainly divided into three aspects: activation of immune cells to exert immune regulatory response; participation in inflammatory response-related pathways and regulation of the expression level of inflammatory factors; effect on the metabolic activity of intestinal flora. This study identifies active anti-inflammatory components and an action mechanism of black ginseng showing multi-component, multi-target, and multi-channel characteristics, providing ideas and a basis for a follow-up in-depth study of its specific mechanism.  相似文献   
6.
The adult mammalian heart is thought to be a terminally differentiated organ given the postmitotic nature of cardiomyocytes. Consequently, the potential for cardiac repair through cardiomyocyte proliferation is extremely limited. Low-density lipoprotein receptor-related protein 6 (LRP6) is a Wnt co-receptor that is required for embryonic heart development. In this study we investigated the role of LRP6 in heart repair through regulation of cardiomyocyte proliferation. Lrp6 deficiency increased cardiomyocyte cell cycle activity in neonatal, juvenile and adult mice. Cardiomyocyte-specific deletion of Lrp6 in the mouse heart induced a robust regenerative response after myocardial infarction (MI), led to reduced MI area and improvement in left ventricular systolic function. In vivo genetic lineage tracing revealed that the newly formed cardiomyocytes in Lrp6-deficient mouse hearts after MI were mainly derived from resident cardiomyocytes. Furthermore, we found that the pro-proliferative effect of Lrp6 deficiency was mediated by the ING5/P21 signaling pathway. Gene therapy using the adeno-associated virus (AAV)9 miRNAi-Lrp6 construct promoted the repair of heart injury in mice. Lrp6 deficiency also induced the proliferation of human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). Our study identifies LRP6 as a critical regulator of cardiomyocyte proliferation, which may lead to the development of a novel molecular strategy to promote myocardial regeneration and repair.Subject terms: Cell-cycle exit, Cytokinesis  相似文献   
7.
8.
Macrophages play pivotal roles in the maintenance of tissue homeostasis. However, the reactivation of macrophages toward proinflammatory states correlates with a plethora of inflammatory diseases, including atherosclerosis, obesity, neurodegeneration, and bone marrow (BM) failure syndromes. The lack of methods to reveal macrophage phenotype and function in vivo impedes the translational research of these diseases. Here, we found that proinflammatory macrophages accumulate intracellular lipid droplets (LDs) relative to resting or noninflammatory macrophages both in vitro and in vivo, indicating that LD accumulation serves as a structural biomarker for macrophage phenotyping. To realize the staining and imaging of macrophage LDs in vivo, we developed a fluorescent fatty acid analog-loaded poly(lactic-co-glycolic acid) nanoparticle to label macrophages in mice with high efficiency and specificity. Using these novel nanoparticles, we achieved in situ functional identification of single macrophages in BM, liver, lung, and adipose tissues under conditions of acute or chronic inflammation. Moreover, with this intravital imaging platform, we further realized in vivo phenotyping of individual macrophages in the calvarial BM of mice under systemic inflammation. In conclusion, we established an efficient in vivo LD labeling and imaging system for single macrophage phenotyping, which will aid in the development of diagnostics and therapeutic monitoring. Moreover, this method also provides new avenues for the study of lipid trafficking and dynamics in vivo.Supplementary key words: macrophage, inflammation, lipid droplet, nanoparticle delivery, in vivo imaging, fatty acid analog, bone marrow, systemic inflammation, lipid trafficking, biomarker

Macrophages, a type of immune cells, almost reside in all tissues of body, from the skin to the bone marrow (BM) (1). Macrophages have remarkable plasticity, and they can be activated into specific subtypes by modifying their physiology and functions in response to local environmental cues. Activated macrophages are commonly divided into proinflammatory killing subtype and anti-inflammatory repairing subtype. Proinflammatory macrophages responding to bacteria, IFN-γ, and lipopolysaccharide (LPS) are involved in host defense and inflammation, whereas anti-inflammatory macrophages responding to interleukin-4 (IL-4), IL-10, and IL-13 play a pivotal role in tissue homeostasis and remodeling (2). Increasing evidence indicates that the reactivation of macrophages toward proinflammatory states under diverse kinds of stress is correlated with a plethora of inflammatory diseases, such as atherosclerosis, diabetes, obesity, rheumatoid arthritis, neurodegeneration, and BM failure syndromes (3, 4). Thus, characterization of macrophage activation status and the underlying molecular mechanism in situ will help elucidate their functions in these diseases; however, in vivo analysis of the macrophage activation status in their native multicellular microenvironment is challenging.Although lipid droplets (LDs) have been initially described as intracellular fat storage organelles in adipocytes, increasing studies indicate that myeloid cells also form LDs under inflammation and stress (5, 6). Macrophages, as the effector cells of innate immunity, are found to form LDs to support their host defense when exposed to pathogens, such as parasites, bacteria, and viruses (7, 8, 9, 10, 11). However, abnormal LD accumulation in tissue-resident macrophages correlates with the pathogenesis of various inflammatory diseases. For instance, foam cells in atherosclerotic lesions can maintain the local inflammatory response by secreting proinflammatory cytokines (12, 13, 14). Moreover, LD-accumulating microglia contribute to neurodegeneration by producing high levels of reactive oxygen species (ROS) and secreting proinflammatory cytokines (15). These findings indicate that LD accumulation might be a hallmark of macrophages with proinflammatory functions.In this study, based on the typical activation of in vitro BM-derived macrophages, we find that proinflammatory M(LPS + IFN-γ) macrophages are characterized by LD accumulation, whereas resting macrophages and anti-inflammatory M(IL-4) and M(IL-10) macrophages do not contain any LDs. These features also hold for Matrigel plug-recruited macrophages and tissue-resident macrophages in mice. These findings demonstrate that LD accumulation could serve as a morphological index to distinguish proinflammatory macrophages from others.It is feasible to distinguish LD-containing cells using imaging techniques, which has translational potential for identification of proinflammatory macrophages in vivo. However, current techniques for LD visualization are traditional in vitro staining method, and in vivo staining and imaging of LD in individual macrophages remains a challenge. Through nanocarrier screening, we selected the poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) as nanocarrier to deliver the lipophilic carbocyanine dye (DiIC18(5) solid (1,1''-dioctadecyl-3,3,3'',3''-tetramethylindodicarbocyanine, 4-chlorobenzenesulfonate salt) [DiD]) and lipid staining dye (C1-BODIPY 500/510-C12) into macrophages. Using these dual fluorescence-labeled PLGA NPs, we achieved in situ and in vivo functional identification of single macrophages in various tissues under systemic or local inflammatory stress. Collectively, this study establishes an efficient in vivo labeling and imaging system of intracellular LDs for phenotyping the activation status and functions of individual macrophages in their dynamic niche, which is pivotal for disease diagnosis and preclinical research.  相似文献   
9.
陶然  毛雨丰  付晶  黄灿  王智文  陈涛 《微生物学通报》2017,44(11):2530-2538
【目的】研究乙酸合成途径阻断及NADH氧化酶表达对于谷氨酸棒杆菌生产乙偶姻的影响。【方法】在谷氨酸棒杆菌CGF2中异源表达als SD操纵子构建乙偶姻生产菌株CGT1,考察敲除乙酸生成途径cat和pqo对乙偶姻的影响。然后引入短乳杆菌的NADH氧化酶,在优化的溶氧条件下研究其对乙偶姻产量的影响。【结果】CGT1在摇瓶发酵中可积累6.27 g/L乙偶姻,敲除cat使乙偶姻产量显著提高30.94%,达到8.21 g/L;双敲除cat和pqo没有进一步提高产量。通过优化发酵的溶氧水平,乙偶姻产量达到10.06 g/L。在高溶氧水平下引入NADH氧化酶导致菌株的生长和糖代谢速率提高,但乙偶姻产量略有降低。在分批补料发酵中,重组菌株乙偶姻产量达到40.51 g/L,产率为0.51 g/(L?h)。【结论】在谷氨酸棒杆菌中阻断乙酸合成途径cat能够有效提高乙偶姻产量,NADH氧化酶在高溶氧水平下表达不利于乙偶姻的合成,需要进一步调节表达水平以确定其效果。  相似文献   
10.
盐生荒漠地表水热与二氧化碳通量的季节变化及驱动因素   总被引:4,自引:0,他引:4  
以古尔班通古特沙漠南缘原始盐生荒漠为对象,利用涡度相关法,对原始盐生荒漠地表水热、二氧化碳通量进行了连续观测,对通量的季节变化、浅层土壤水分条件改变对盐生荒漠植物群落水汽、二氧化碳通量以及水分利用效率的影响进行了系统的分析.结果表明:净辐射通量、潜热通量和二氧化碳通量都具有明显的季节变化趋势,而显热通量的季节变化不明显.在有效能量的分配上,显热通量是有效能量的主要输出项.在降水影响期和非影响期,二氧化碳通量没有明显的变化;而在非降水影响期潜热通量明显降低,表明土壤水分处于亏缺状态,但二氧化碳通量并没有降低的趋势,而与前期保持高度的一致性.以此可以推断,该荒漠盐生植物群落并不以降水为主要水分来源,降水后水汽通量和二氧化碳通量变化的不一致性是该原始盐生荒漠独特植物特征决定的.降水影响期原始盐生荒漠植物群落的水分利用效率低于非影响期,是由于降水后土壤蒸发迅速增加,而植物蒸腾与光合并未随之增加造成的.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号