首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   6篇
  2021年   4篇
  2020年   1篇
  2019年   1篇
  2018年   4篇
  2017年   3篇
  2016年   4篇
  2015年   2篇
  2014年   1篇
  2013年   3篇
  2012年   7篇
  2011年   4篇
  2010年   2篇
  2009年   3篇
  2008年   4篇
  2007年   4篇
  2006年   3篇
  2005年   2篇
  2004年   8篇
  2003年   3篇
  2002年   3篇
  2001年   2篇
  1997年   2篇
  1995年   1篇
  1993年   1篇
排序方式: 共有72条查询结果,搜索用时 453 毫秒
1.
Yeast strains are commonly associated with sugar rich environments. Various fruit samples were selected as source for isolating yeast cells. The isolated cultures were identified at Genus level by colony morphology, biochemical characteristics and cell morphological characters. An attempt has been made to check the viability of yeast cells under different concentrations of ethanol. Ethanol tolerance of each strain was studied by allowing the yeast to grow in liquid YEPD (Yeast Extract Peptone Dextrose) medium having different concentrations of ethanol. A total of fifteen yeast strains isolated from different samples were used for the study. Seven strains of Saccharomyces cerevisiae obtained from different fruit sources were screened for ethanol tolerance. The results obtained in this study show a range of tolerance levels between 7%-12% in all the stains. Further, the cluster analysis based on 22 RAPD (Random Amplified polymorphic DNA) bands revealed polymorphisms in these seven Saccharomyces strains.  相似文献   
2.
The objective of this study was to compare gas exchange, cardiac and cerebral hemodynamic responses between 10 non-obese and 10 obese men during submaximal work. With the increasing prevalence of obesity, there is a need to understand the impact of obesity on work-induced responses. Participants completed a step-wise incremental cycling until they reached 60% of their age-predicted maximum heart rate. Gas exchange, cardiac and pre-frontal cortex hemodynamic responses were simultaneously measured during rest, work, and recovery. The non-obese group reached ~43% of their predicted maximal aerobic capacity as compared to ~34% in the obese group, with the non-obese working at a relatively higher workload and for more duration than the obese. The obese had elevated baseline heart rate and reduced whole-body oxygen uptake per body weight at baseline and task termination. Other cardiac and cerebral responses, although increased from baseline, were similar between groups during submaximal effort. In the obese, during recovery oxygen uptake and heart-rate recovery were slowest; cardiac output and rate pressure product were greatest, and left ventricle ejection time was shortest. However, both groups exhibited similar cerebral hemodynamics during recovery. These finding imply that, irrespective of their low aerobic fitness, obesity does not impair myocardial performance and cerebrovascular function during graded submaximal work, however, recovery from a short duration of work was influenced by their fitness level. Since a majority of activities of daily living are performed at individual’s submaximal level, understanding influence of obesity on submaximal work is critical.  相似文献   
3.
Conversion of CO2 to energy‐rich chemicals using renewable energy is of much interest to close the anthropogenic carbon cycle. However, the current photoelectrochemical systems are still far from being practically feasible. Here the successful demonstration of a continuous, energy efficient, and scalable solar‐driven CO2 reduction process based on earth‐abundant molybdenum disulfide (MoS2) catalyst, which works in synergy with an inexpensive hybrid electrolyte of choline chloride (a common food additive for livestock) and potassium hydroxide (KOH) is reported. The CO2 saturated hybrid electrolyte utilized in this study also acts as a buffer solution (pH ≈ 7.6) to adjust pH during the reactions. This study reveals that this system can efficiently convert CO2 to CO with solar‐to‐fuel and catalytic conversion efficiencies of 23% and 83%, respectively. Using density functional theory calculations, a new reaction mechanism in which the water molecules near the MoS2 cathode act as proton donors to facilitate the CO2 reduction process by MoS2 catalyst is proposed. This demonstration of a continuous, cost‐effective, and energy efficient solar driven CO2 conversion process is a key step toward the industrialization of this technology.  相似文献   
4.
As an ancient segmental tetraploid, the maize (Zea mays L.) genome contains large numbers of paralogs that are expected to have diverged by a minimum of 10% over time. Nearly identical paralogs (NIPs) are defined as paralogous genes that exhibit > or = 98% identity. Sequence analyses of the "gene space" of the maize inbred line B73 genome, coupled with wet lab validation, have revealed that, conservatively, at least approximately 1% of maize genes have a NIP, a rate substantially higher than that in Arabidopsis. In most instances, both members of maize NIP pairs are expressed and are therefore at least potentially functional. Of evolutionary significance, members of many NIP families also exhibit differential expression. The finding that some families of maize NIPs are closely linked genetically while others are genetically unlinked is consistent with multiple modes of origin. NIPs provide a mechanism for the maize genome to circumvent the inherent limitation that diploid genomes can carry at most two "alleles" per "locus." As such, NIPs may have played important roles during the evolution and domestication of maize and may contribute to the success of long-term selection experiments in this important crop species.  相似文献   
5.
Misfolded proteins, endoplasmic reticulum stress and neurodegeneration   总被引:18,自引:0,他引:18  
The accumulation of misfolded proteins (e.g. mutant or damaged proteins) triggers cellular stress responses that protect cells against the toxic buildup of such proteins. However, prolonged stress due to the buildup of these toxic proteins induces specific death pathways. Dissecting these pathways should be valuable in understanding the pathogenesis of, and ultimately in designing therapy for, neurodegenerative diseases that feature misfolded proteins.  相似文献   
6.
We examined whether brain glucocorticoid receptor (GR) modulation by polychlorinated biphenyls (PCBs) was involved in the abnormal cortisol response to stress seen in anadromous Arctic charr (Salvelinus alpinus). Fish treated with Aroclor 1254 (0, 1, 10, and 100 mg/kg body mass) were maintained for 5 mo without feeding in the winter to mimic their seasonal fasting cycle, whereas a fed group with 0 and 100 mg/kg Aroclor was maintained for comparison. Fasting elevated plasma cortisol levels and brain GR content but depressed heat shock protein 90 (hsp90) and interrenal cortisol production capacity. Exposure of fasted fish to Aroclor 1254 resulted in a dose-dependent increase in brain total PCB content. This accumulation in fish with high PCB dose was threefold higher in fasted fish compared with fed fish. PCBs depressed plasma cortisol levels but did not affect in vitro interrenal cortisol production capacity in fasted charr. At high PCB dose, the brain GR content was significantly lower in the fasted fish and this corresponded with a lower brain hsp70 and hsp90 content. The elevation of plasma cortisol levels and upregulation of brain GR content may be an important adaptation to extended fasting in anadromous Arctic charr, and this response was disrupted by PCBs. Taken together, the hypothalamus-pituitary-interrenal axis is a target for PCB impact during winter emaciation in anadromous Arctic charr.  相似文献   
7.
8.
The objective of this study was to evaluate whether alpha-naphthoflavone (ANF) modulates aryl hydrocarbon receptor (AhR) signaling in rainbow trout (Oncorhynchus mykiss). AhR and cytochrome P450 1A1 (CYP1A1) protein and mRNA content were used as indictors of AhR signaling. Primary culture of rainbow trout hepatocytes were exposed to different concentrations of ANF (10(-9)-10(-5) M), while beta-naphthoflavone (BNF 10(-10)-10(-6) M) and a combination of ANF and BNF were used to elucidate the impact of ANF on AhR signaling. ANF increased AhR and CYP1A1 protein expression in a concentration-related manner; the maximal induction was about 50% that of BNF. Despite the differences in protein content between ANF and BNF stimulation, the maximal AhR and CYP1A1 mRNA abundance seen with the high concentrations of ANF and BNF were similar. ANF significantly decreased ( approximately 50%) BNF-induced AhR protein expression (only at 10(-9) M), but not CYP1A1 protein and gene expression. In addition, ANF at a sub-maximal concentration (10(-7) M) did not affect BNF-induced AhR protein content, but increased the sensitivity of hepatocytes to BNF-mediated CYP1A1 protein expression. Taken together, the mode of action of ANF appears similar to BNF, including modulation of AhR expression and activation of AhR-mediated signaling in rainbow trout hepatocytes. Overall, ANF is not only a partial AhR agonist, but may also modify BNF-mediated AhR signaling in trout hepatocytes.  相似文献   
9.
In many of autosomal dominant diseases such as familial amyotrophic lateral sclerosis (ALS) with SOD1 mutation, a missense point mutation may induce the disease by its gain of adverse property. Reduction of such a mutant protein expression is expected to improve the disease phenotype. Duplex of 21-nt RNA, known as siRNA, has recently emerged as a powerful tool to silence gene, but the sequence specificity and efficacies have not been fully studied in comparison with ribozyme and DNA enzyme. We could make the siRNA which recognized even a single nucleotide alternation and selectively suppress G93A SOD1 expression leaving wild-type SOD1 intact. In mammalian cells, the siRNA much more efficiently suppressed the expression of mutant SOD1 than ribozyme or DNA enzyme. Furthermore, these siRNAs could suppress cell death of Neuro2a induced by over-expression of mutant SOD1s with stress of proteasome inhibition. Our results support the feasibility of utilizing siRNA-based gene therapy of familial ALS with mutant SOD1.  相似文献   
10.
Neuroglobin is a hypoxia-inducible O(2) -binding protein with neuroprotective effects in cell and animal models of stroke and Alzheimer's disease. The mechanism underlying neuroglobin's cytoprotective action is unknown, although several possibilities have been proposed, including anti-oxidative and anti-apoptotic effects. We used affinity purification-mass spectrometry methods to identify neuroglobin-interacting proteins in normoxic and hypoxic murine neuronal (HN33) cell lysates, and to compare these interactions with those of a structurally and functionally related protein, myoglobin. We report that the protein interactomes of neuroglobin and myoglobin overlap substantially and are modified by hypoxia. In addition, neuroglobin-interacting proteins include partners consistent with both anti-oxidative and anti-apoptotic functions, as well as with a relationship to several neurodegenerative diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号