首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   0篇
  2019年   1篇
  2015年   3篇
  2014年   1篇
  2013年   5篇
  2011年   2篇
  2010年   2篇
  2008年   1篇
  2006年   2篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   4篇
  1998年   1篇
  1980年   1篇
排序方式: 共有28条查询结果,搜索用时 15 毫秒
1.
Canstatin, a novel matrix-derived inhibitor of angiogenesis and tumor growth   总被引:63,自引:0,他引:63  
We isolated and identified an endogenous 24-kDa human basement membrane-derived inhibitor of angiogenesis and tumor growth, termed canstatin. Canstatin, a fragment of the alpha2 chain of type IV collagen, was produced as a recombinant molecule in Escherichia coli and 293 embryonic kidneys cells. Canstatin significantly inhibited human endothelial cell migration and murine endothelial cell tube formation. Additionally, canstatin potently inhibited 10% fetal bovine serum-stimulated endothelial cell proliferation and induced apoptosis, with no inhibition of proliferation or apoptosis observed on non-endothelial cells. Inhibition of endothelial proliferation was not concomitant with a change in extracellular signal-regulated kinase activation. We demonstrate that apoptosis induced by canstatin was associated with a down-regulation of the anti-apoptotic protein, FLIP. Canstatin also suppressed in vivo growth of large and small size tumors in two human xenograft mouse models with histology revealing decreased CD31-positive vasculature. Collectively, these results suggest that canstatin is a powerful therapeutic molecule for suppressing angiogenesis.  相似文献   
2.
Endostatin is a potential inhibitor of Wnt signaling   总被引:33,自引:0,他引:33  
  相似文献   
3.
Thiolutin is a dithiole synthesized by Streptomyces sp. that inhibits endothelial cell adhesion and tumor growth. We show here that thiolutin potently inhibits developmental angiogenesis in zebrafish and vascular outgrowth from tissue explants in 3D cultures. Thiolutin is a potent and selective inhibitor of endothelial cell adhesion accompanied by rapid induction of HSPB1 (Hsp27) phosphorylation. The inhibitory effects of thiolutin on endothelial cell adhesion are transient, potentially due to a compensatory increase in Hsp27 protein levels. Accordingly, heat shock induction of Hsp27 limits the anti-adhesive activity of thiolutin. Thiolutin treatment results in loss of actin stress fibers, increased cortical actin as cells retract, and decreased cellular F-actin. Mass spectrometric analysis of Hsp27 binding partners following immunoaffinity purification identified several regulatory components of the actin cytoskeleton that associate with Hsp27 in a thiolutin-sensitive manner including several components of the Arp2/3 complex. Among these, ArpC1a is a direct binding partner of Hsp27. Thiolutin treatment induces peripheral localization of phosphorylated Hsp27 and Arp2/3. Hsp27 also associates with the intermediate filament components vimentin and nestin. Thiolutin treatment specifically ablates Hsp27 interaction with nestin and collapses nestin filaments. These results provide new mechanistic insights into regulation of cell adhesion and cytoskeletal dynamics by Hsp27.  相似文献   
4.
Here we have investigated the ability of laminin-1 and specific laminin-1-derived synthetic peptides to stimulate neuronal cell matrix metalloproteinase secretion. Zymographic analysis of conditioned media from laminin-1-treated PC12 and NG108-15 cells revealed a 72-kDa matrix metalloproteinase which was not secreted by untreated cells. Laminin-1 α1 chain-derived synthetic peptides, AASIKVAVSADR (LAM-L) and RKRLQVQLSIRT (AG-73), also stimulated PC12 cell secretion of a 72-kDa matrix metalloproteinase. We further investigated the structural requirements of AG-73 for cell attachment, neurite outgrowth, and matrix metalloproteinase secretion using a series of AG-73 analogs that had single amino acids substituted with alanine. At the substrate levels tested, the AG-73 peptide promoted the adhesion of 67% of the PC12 cells and neurite outgrowth in 71% of the PC12 cells. Substitutions in any one of the amino acids within the central LQVQ sequence resulted in a large reduction in cell attachment whereas substitution in the carboxyl terminal proximal amino acids L, S, and R had little effect on attachment. Alanine substitution of any of the amino terminal proximal LQV amino acids and the carboxyl terminal L, I, and R residues resulted in a 65–91% reduction in neurite outgrowth. These data demonstrate that the sequence requirements for cell attachment and neurite outgrowth were not necessarily coupled but that the sequence requirements for neurite outgrowth and matrix metalloproteinase secretion were identical. We conclude that laminin-1 is able to stimulate neuronal cells to secrete a matrix metalloproteinase. Further, this study identifies the LQVXLXIR laminin-1 α1 globular domain peptide to be capable of stimulating both neurite outgrowth and matrix metalloproteinase secretion.  相似文献   
5.
The gene product ahnak has been identified from extra-embryonic mesoderm cDNA enriched using a subtractive hybridization approach modified for using small amounts of starting material. Clones for cyclin D2 and H19 have also been isolated as being preferentially enriched in the extra-embryonic mesoderm compared with the embryo proper of embryonic day (E) 7.5 neural plate stage mouse embryos. The differential expression of these genes was confirmed at gastrulation stage using in situ hybridization. More detailed analysis of the human genomic ahnak sequence suggests that its highly repetitive structure was formed by unequal cross-over and gene conversion. During organogenesis, ahnak is expressed in a variety of tissues, including migratory mesenchyme. By E12.5, the major site of expression of ahnak is craniofacial mesenchyme. Immunohistochemical analysis has shown that ahnak protein is expressed mainly at the cell membrane of migratory mesenchymal cells, primarily in the nucleus of bone growth plate cells and mostly in the cytoplasm of differentiating nasal epithelia. The potential functions of ahnak are discussed in light of these results.  相似文献   
6.
Brain metastasis is a defining component of tumor pathophysiology, and the underlying mechanisms responsible for this phenomenon are not well understood. Current dogma is that tumor cells stimulate and activate astrocytes, and this mutual relationship is critical for tumor cell sustenance in the brain. Here, we provide evidence that primary rat neonatal and adult astrocytes secrete factors that proactively induced human lung and breast tumor cell invasion and metastasis capabilities. Among which, tumor invasion factors namely matrix metalloprotease-2 (MMP-2) and MMP-9 were partly responsible for the astrocyte media-induced tumor cell invasion. Inhibiting MMPs reduced the ability of tumor cell to migrate and invade in vitro. Further, injection of astrocyte media-conditioned breast cancer cells in mice showed increased invasive activity to the brain and other distant sites. More importantly, blocking the preconditioned tumor cells with broad spectrum MMP inhibitor decreased the invasion and metastasis of the tumor cells, in particular to the brain in vivo. Collectively, our data implicate astrocyte-derived MMP-2 and MMP-9 as critical players that facilitate tumor cell migration and invasion leading to brain metastasis.  相似文献   
7.
Sepsis-mediated endothelial Angiopoeitin-2 (Ang2) signaling may contribute to microvascular remodeling in the developing lung. The mechanisms by which bacterial cell wall components such as LPS mediate Ang2 signaling in human pulmonary microvascular endothelial cells (HPMECs) remain understudied. In HPMEC, LPS-induced Ang2, Tie2, and VEGF-A protein expression was preceded by increased superoxide formation. NADPH oxidase 2 (Nox2) inhibition, but not Nox4 or Nox1 inhibition, attenuated LPS-induced superoxide formation and Ang2, Tie2, and VEGF-A expression. Nox2 silencing, but not Nox4 or Nox1 silencing, inhibited LPS-mediated inhibitor of κ-B kinase β (IKKβ) and p38 phosphorylation and nuclear translocation of NF-κB and AP-1. In HPMECs, LPS increased the number of angiogenic tube and network formations in Matrigel by >3-fold. Conditioned media from LPS-treated cells also induced angiogenic tube and network formation in the presence of Toll-like receptor 4 blockade but not in the presence of Ang2 and VEGF blockade. Nox2 inhibition or conditioned media from Nox2-silenced cells attenuated LPS-induced tube and network formation. Ang2 and VEGF-A treatment rescued angiogenesis in Nox2-silenced cells. We propose that Nox2 regulates LPS-mediated Ang2-dependent autocrine angiogenesis in HPMECs through the IKKβ/NF-κB and MAPK/AP-1 pathways.  相似文献   
8.
9.
Robo4 signaling in endothelial cells implies attraction guidance mechanisms   总被引:2,自引:0,他引:2  
Roundabouts (robo) are cell-surface receptors that mediate repulsive signaling mechanisms at the central nervous system midline. However, robos may also mediate attraction mechanisms in the context of vascular development. Here, we have performed structure-function analysis of roundabout4 (Robo4), the predominant robo expressed in embryonic zebrafish vasculature and found by gain of function approaches in vitro that Robo4 activates Cdc42 and Rac1 Rho GTPases in endothelial cells. Indeed, complementary robo4 gene knockdown approaches in zebrafish embryos show lower amounts of active Cdc42 and Rac1 and angioblasts isolated from these knockdown embryos search actively for directionality and guidance cues. Furthermore, Robo4-expressing endothelial cells show morphology and phenotype, characteristic of Rho GTPase activation. Taken together, this study suggests that Robo4 mediates attraction-signaling mechanisms through Rho GTPases in vertebrate vascular guidance.  相似文献   
10.
A series of 4-alkylaminoaryl phenyl cyclopropyl methanones (6a6u and 8a8c) were synthesized from 4-fluorochalcones (3a and 3b) by cyclopropanation of double bond followed by nucleophilic substitution of F with different amines. The compounds were screened for their antitubercular and antimalarial activities against Mycobacterium tuberculosis H37Rv and Plasmodium falciparum 3D7 strains in vitro respectively. Several compounds (6a, 6d6h, 6p, 6q and 8a8c) exhibited good in vitro antitubercular activities with MIC values 3.12–12.5 μg/mL and preferentially inhibited the growth of P. falciparum in vitro (4a, 4c, 6a6d, 6f, 6s, 8a and 8c) with IC50 as low as 0.080 and 0.035 μg/mL and SI values 4975 and 6948, respectively. Molecular docking studies and in vitro evaluation against FAS-II enzymes using reporter gene assays were carried out to elucidate the mode of action of these molecules. Two compounds 4a and 6g showed significant inhibition at 25 μM concentration of the compound.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号