排序方式: 共有29条查询结果,搜索用时 15 毫秒
1.
The water relations and responses of two evergreen (Quercus ilex L. and Q. suber L.) and two deciduous (S. afares Pomel. and Q. faginea Will.) Quercus species were studied under experimental conditions. Two-year old seedlings grown in 30 l. pots were subjected to a drying period during which stomatal conductance, pre-dawn potential and minimum foliar potential were measured.The results shows that, for all species, the daily course of stomatal conductance agrees with the patterns proposed by Hinckley et al. (1978 & 1983). Concurrent with the species responses to short-term variation in water availability, it was found that pre-dawn leaf water potential controlled the maximum daily leaf conductance. There was a strong correlation between pre-dawn leaf potential and maximum daily conductance as described by the reciprocal function gsrmax for=(-0.47+2.61.p)-1 the evergreen oaks and gsrmax for=(-1.94+7.39.p)-1 for the deciduous species. These differences between the two groups may partialy explain their geograhic distributions, and suggest general questions concerning the mechanisms which optimize water-use efficiency in Mediterranean oak species. 相似文献
2.
S. Rambal 《Oecologia》1984,62(1):18-25
Summary The water balance of a Quercus coccifera evergreen scrub was studied over 7 consecutive years. This scrub grows on hard limestone. Soil water content was measured with a neutron meter. Calibration curves were calculated from (1) the thermal neutron macroscopic cross-sections of soil (<2-mm fraction) and rock samples, and (2) the profile of wet bulk density measured with a subsurface gamma-ray gauge. The annual and seasonal patterns of actual evapotranspiration and of deep drainage were calculated using field-measured drainage characteristics. The soil water content data were used to compute water uptake rates and pattern for the root zone over a 4-month drying period. The 906 mm of mean annual precipitation yielded 603 mm of actual evapotranspiration (AET) and 296 mm of drainage. No drainage occured with precipitation less than 578 mm. The average AET values for the months from April to September were 57, 74, 89, 96, 70, and 42 mm respectively. It was found that Quercus coccifera consumed considerable quantities of water from the soil-rock complex. Roots could extract 270 mm of water in the first 470 cm of soil. The results showed a gradual downward shift of the zone of maximum root water uptake as the soil dried. 相似文献
3.
Cavender-Bares J Cortes P Rambal S Joffre R Miles B Rocheteau A 《The New phytologist》2005,168(3):597-612
Freezing sensitivity of leaves and xylem was examined in four co-occurring Mediterranean oaks (Quercus spp.) grown in a common garden to determine whether freezing responses of leaves and xylem were coordinated and could be predicted by leaf lifespan. Freezing-induced embolism and loss of photosynthetic function were measured after overnight exposure to a range of subzero temperatures in both summer and winter. Both measures were found to be dependent on minimum freezing temperature and were correlated with leaf lifespan and vessel diameter. The dependence of xylem embolism on minimum freezing temperature may result from the decline in water potential with ice temperature that influences the redistribution of water during freezing and leads to an increase in xylem tension. Winter acclimatization had a relatively small effect on the vulnerability to freezing-induced embolism, although leaf photosynthetic function showed a strong acclimatization response, particularly in the two evergreen species. Quercus ilex, the species with the longest leaf lifespan and narrowest vessel diameters, showed the highest freezing tolerance. This helps explain its ability to inhabit a broad range throughout the Mediterranean region. By contrast, the inability of the deciduous oaks to maintain photosynthetic and vascular function throughout the winter indicates a competitive disadvantage that may prevent them from expanding their ranges. 相似文献
4.
Oula Shahin Nicolas Martin-St Paul Serge Rambal Richard Joffre Franck Richard 《Symbiosis (Philadelphia, Pa.)》2013,61(1):1-12
Understanding the factors underlying the distribution of biodiversity is a challenging issue in ecology. Here, we examined the distribution patterns of ectomycorrhizal fungal diversity across the soil profile in three Quercus ilex forests. Contact exploration type strongly dominated at all sites, but was most prevalent in the upper, organic-rich soil layers. At each site, three quarters of the ectomycorrhizal tips and 59 % of taxa were restricted to the ten first centimeters of the soil profile. The relative abundance of the dominant family Russulaceae increased with increasing soil depth. Species composition varied significantly among sites, with most species being rare. Species that occurred in only one of the three sites accounted for 78.9 % of all species, and 57.3 % of species were represented by a single ECM root tip. Our results suggest that (i) rare species at both local and regional scales contribute to the highly diverse fungal assemblages in Mediterranean forests and (ii) multi-sites studies including the whole soil profile are needed to provide comprehensive overviews of the taxonomic and functional diversities of ectomycorrhizal communities. 相似文献
5.
Nadine Boulant Georges Kunstler Serge Rambal Jacques Lepart 《Diversity & distributions》2008,14(5):862-874
Aim The rate of grassland invasion by trees depends on the ability of the species to invade, i.e. their invasiveness, and on the susceptibility of the environments to invasion, i.e. their invasibility. Knowledge of the invasiveness of native and introduced tree species and of the environmental factors that contribute to invasibility is necessary to understand landscape evolution and assess required management measures. Our main aim was to explore this by estimating the separate effects of propagule pressure and environmental factors on the spatio‐temporal patterns of sapling recruitment, a key stage in the tree life cycle. Location Causse Mejean calcareous plateau (southern France). Methods The effects of seed supply and environmental variables (grazing, geological substrate, and duration or intensity of drought) on the spatio‐temporal patterns of sapling recruitment were assessed for the native Scots pine (Pinus sylvestris L.) and the introduced black pine (Pinus nigra Arn. ssp. nigra). Estimates were derived by inverse modelling with data of locations and ages of 4‐ to 20‐year‐old saplings and seed‐bearing trees in 32 sites. Yearly indices of drought were derived from a soil–water content model. Results For both species, seed supply was as important as the whole set of environmental factors in explaining sapling recruitment rates. Grazing and the duration of drought from July to August decreased sapling recruitment rates, which were also lower on hard limestone than on dolomite. Dispersal distances and effective fecundities were higher for the introduced P. nigra, which was less susceptible to drought but more affected by grazing than the native P. sylvestris. In grazed grasslands, shrubs facilitated sapling establishment of both species. Main conclusions This study shows how seed supply and environmental factors shape spatio‐temporal patterns of sapling recruitment for trees invading grasslands. Implications for landscape evolution and management, of the difference in invasiveness of the two pine species and of the hierarchy of environmental factors in determining invasibility, are discussed. 相似文献
6.
Athanasios Paschalis Simone Fatichi Jakob Zscheischler Philippe Ciais Michael Bahn Lena Boysen Jinfeng Chang Martin De Kauwe Marc Estiarte Daniel Goll Paul J. Hanson Anna B. Harper Enqing Hou Jaime Kigel Alan K. Knapp Klaus S. Larsen Wei Li Sebastian Lienert Yiqi Luo Patrick Meir Julia E. M. S. Nabel Rom Ogaya Anthony J. Parolari Changhui Peng Josep Peuelas Julia Pongratz Serge Rambal Inger K. Schmidt Hao Shi Marcelo Sternberg Hanqin Tian Elisabeth Tschumi Anna Ukkola Sara Vicca Nicolas Viovy Ying‐Ping Wang Zhuonan Wang Karina Williams Donghai Wu Qiuan Zhu 《Global Change Biology》2020,26(6):3336-3355
Changes in rainfall amounts and patterns have been observed and are expected to continue in the near future with potentially significant ecological and societal consequences. Modelling vegetation responses to changes in rainfall is thus crucial to project water and carbon cycles in the future. In this study, we present the results of a new model‐data intercomparison project, where we tested the ability of 10 terrestrial biosphere models to reproduce the observed sensitivity of ecosystem productivity to rainfall changes at 10 sites across the globe, in nine of which, rainfall exclusion and/or irrigation experiments had been performed. The key results are as follows: (a) Inter‐model variation is generally large and model agreement varies with timescales. In severely water‐limited sites, models only agree on the interannual variability of evapotranspiration and to a smaller extent on gross primary productivity. In more mesic sites, model agreement for both water and carbon fluxes is typically higher on fine (daily–monthly) timescales and reduces on longer (seasonal–annual) scales. (b) Models on average overestimate the relationship between ecosystem productivity and mean rainfall amounts across sites (in space) and have a low capacity in reproducing the temporal (interannual) sensitivity of vegetation productivity to annual rainfall at a given site, even though observation uncertainty is comparable to inter‐model variability. (c) Most models reproduced the sign of the observed patterns in productivity changes in rainfall manipulation experiments but had a low capacity in reproducing the observed magnitude of productivity changes. Models better reproduced the observed productivity responses due to rainfall exclusion than addition. (d) All models attribute ecosystem productivity changes to the intensity of vegetation stress and peak leaf area, whereas the impact of the change in growing season length is negligible. The relative contribution of the peak leaf area and vegetation stress intensity was highly variable among models. 相似文献
7.
8.
The growth respiration component in eddy CO2 flux from a Quercus ilex mediterranean forest 总被引:1,自引:0,他引:1
S. Rambal R. Joffre J. M. Ourcival J. Cavender-Bares† A. Rocheteau 《Global Change Biology》2004,10(9):1460-1469
Ecosystem respiration, arising from soil decomposition as well as from plant maintenance and growth, has been shown to be the most important component of carbon exchange in most terrestrial ecosystems. The goal of this study was to estimate the growth component of whole‐ecosystem respiration in a Mediterranean evergreen oak (Quercus ilex) forest over the course of 3 years. Ecosystem respiration (Reco) was determined from night‐time carbon dioxide flux (Fc) using eddy correlation when friction velocity (u*) was greater than 0.35 m s?1 We postulated that growth respiration could be evaluated as a residual after removing modeled base Reco from whole‐ecosystem Reco during periods when growth was most likely occurring. We observed that the model deviated from the night‐time Fc‐based Reco during the period from early February to early July with the largest discrepancies occurring at the end of May, coinciding with budburst when active aboveground growth and radial growth increment are greatest. The highest growth respiration rates were observed in 2001 with daily fluxes reaching up to 4 g C m?2. The cumulative growth respiration for the entire growth period gave total carbon losses of 170, 208, and 142 g C m?2 for 1999, 2001, and 2002, respectively. Biochemical analysis of soluble carbohydrates, starch, cellulose, hemicellulose, proteins, lignin, and lipids for leaves and stems allowed calculation of the total construction costs of the different growth components, which yielded values of 154, 200, and 150 g C for 3 years, respectively, corresponding well to estimated growth respiration. Estimates of both leaf and stem growth showed very large interannual variation, although average growth respiration coefficients and average yield of growth processes were fairly constant over the 3 years and close to literature values. The time course of the growth respiration may be explained by the growth pattern of leaves and stems and by cambial activity. This approach has potential applications for interpreting the effects of climate variation, disturbances, and management practices on growth and ecosystem respiration. 相似文献
9.
Rüdiger Grote Anne-Violette Lavoir Serge Rambal Michael Staudt Ina Zimmer Jörg-Peter Schnitzler 《Oecologia》2009,160(2):213-223
In many ecosystems drought cycles are common during the growing season but their impact on volatile monoterpene emissions
is unclear. Therefore, we aimed to develop and evaluate a process-based modelling approach to explore the explanatory power
of likely mechanisms. The biochemically based isoprene and monoterpene emission model SIM-BIM2 has been modified and linked
to a canopy model and a soil water balance model. Simulations are carried out for Quercus ilex forest sites and results are compared to measured soil water, photosynthesis, terpene-synthase activity, and monoterpene
emission rates. Finally, the coupled model system is used to estimate the annual drought impact on photosynthesis and emission.
The combined and adjusted vegetation model was able to simulate photosynthesis and monoterpene emission under dry and irrigated
conditions with an R
2 of 0.74 and 0.52, respectively. We estimated an annual reduction of monoterpene emission of 67% for the extended and severe
drought period in 2006 in the investigated Mediterranean ecosystem. It is concluded that process-based ecosystem models can
provide a useful tool to investigate the involved mechanisms and to quantify the importance of specific environmental constraints. 相似文献
10.
1. Changes of δ13 C and its relation to leaf development, biochemical content and water stress were monitored over a 2 year period in two co-occurring Mediterranean oak species: the deciduous Quercus pubescens and the evergreen Quercus ilex .
2. The time course of leaf δ13 C showed different patterns in the two species. Young Q. pubescens leaves had a high δ13 C and a marked decrease occurred during leaf growth. In contrast, leaves at budburst and maturity did not differ significantly in the case of Q. ilex . We suggest that the difference between δ13 C of young leaves was linked to differential use of reserves of carbon compounds in the two species.
3. δ13 C values of mature leaves were negatively correlated with minimum seasonal values of predawn water potential, suggesting that a functional adjustment to water resources occurred.
4. There was a significant correlation between individual δ13 C values for two successive years. This interannual dependence showed that δ13 C rankings between trees were constant through time. 相似文献
2. The time course of leaf δ
3. δ
4. There was a significant correlation between individual δ