首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   0篇
  2022年   2篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2015年   2篇
  2014年   2篇
  2013年   3篇
  2012年   2篇
  2011年   1篇
  2010年   5篇
  2009年   2篇
  2008年   4篇
  2007年   4篇
  2006年   3篇
  2005年   2篇
  2004年   3篇
  2003年   2篇
排序方式: 共有40条查询结果,搜索用时 187 毫秒
1.
Clathrin-mediated endocytosis has long been viewed as a process driven by core endocytic proteins, with internalized cargo proteins being passive. In contrast, an emerging view suggests that signaling receptor cargo may actively control its fate by regulating the dynamics of clathrin-coated pits (CCPs) that mediate their internalization. Despite its physiological implications, very little is known about such “cargo-mediated regulation” of CCPs by signaling receptors. Here, using multicolor total internal reflection fluorescence microscopy imaging and quantitative analysis in live cells, we show that the μ-opioid receptor, a physiologically relevant G protein–coupled signaling receptor, delays the dynamics of CCPs in which it is localized. This delay is mediated by the interactions of two critical leucines on the receptor cytoplasmic tail. Unlike the previously known mechanism of cargo-mediated regulation, these residues regulate the lifetimes of dynamin, a key component of CCP scission. These results identify a novel means for selectively controlling the endocytosis of distinct cargo that share common trafficking components and indicate that CCP regulation by signaling receptors can operate via divergent modes.  相似文献   
2.
BioMetals - Increasing cancer drug chemo-resistance, especially in the treatment of breast and lung cancers, alarms the immediate need of newer and effective anticancer drugs. Until now,...  相似文献   
3.
Protease-activated receptor 1 (PAR1) is a G protein–coupled receptor (GPCR) for thrombin and promotes inflammatory responses through multiple pathways including p38 mitogen-activated protein kinase signaling. The mechanisms that govern PAR1-induced p38 activation remain unclear. Here, we define an atypical ubiquitin-dependent pathway for p38 activation used by PAR1 that regulates endothelial barrier permeability. Activated PAR1 K63-linked ubiquitination is mediated by the NEDD4-2 E3 ubiquitin ligase and initiated recruitment of transforming growth factor-β–activated protein kinase-1 binding protein-2 (TAB2). The ubiquitin-binding domain of TAB2 was essential for recruitment to PAR1-containing endosomes. TAB2 associated with TAB1, which induced p38 activation independent of MKK3 and MKK6. The P2Y1 purinergic GPCR also stimulated p38 activation via NEDD4-2–mediated ubiquitination and TAB1–TAB2. TAB1–TAB2-dependent p38 activation was critical for PAR1-promoted endothelial barrier permeability in vitro, and p38 signaling was required for PAR1-induced vascular leakage in vivo. These studies define an atypical ubiquitin-mediated signaling pathway used by a subset of GPCRs that regulates endosomal p38 signaling and endothelial barrier disruption.  相似文献   
4.
3,5-Diaryl pyrazolines analogs were synthesized and evaluated for their monoamine oxidase (MAO) inhibitory activity. The compounds were found reversible and selective towards MAO-A with selectivity index in the magnitude of 103–105. The docking studies were carried out to gain further structural insights of the binding mode and possible interactions with the active site of MAO-A. Interestingly, the theoretical (Ki) values obtained by molecular docking studies were in congruence with their experimental (Ki) values.  相似文献   
5.
6.
7.
The evolutionarily conserved kelch-repeat protein muskelin was identified as an intracellular mediator of cell spreading. We discovered that its morphological activity is controlled by association with RanBP9/RanBPM, a protein involved in transmembrane signaling and a conserved intracellular protein complex. By subcellular fractionation, endogenous muskelin is present in both the nucleus and the cytosol. Muskelin subcellular localization is coregulated by its C terminus, which provides a cytoplasmic restraint and also controls the interaction of muskelin with RanBP9, and its atypical lissencephaly-1 homology motif, which has a nuclear localization activity which is regulated by the status of the C terminus. Transient or stable short interfering RNA–based knockdown of muskelin resulted in protrusive cell morphologies with enlarged cell perimeters. Morphology was specifically restored by complementary DNAs encoding forms of muskelin with full activity of the C terminus for cytoplasmic localization and RanBP9 binding. Knockdown of RanBP9 resulted in equivalent morphological alterations. These novel findings identify a role for muskelin–RanBP9 complex in pathways that integrate cell morphology regulation and nucleocytoplasmic communication.  相似文献   
8.
9.
Non-visual arrestins play a pivotal role as adaptor proteins in regulating the signaling and trafficking of multiple classes of receptors. Although arrestin interaction with clathrin, AP-2, and phosphoinositides contributes to receptor trafficking, little is known about the configuration and dynamics of these interactions. Here, we identify a novel interface between arrestin2 and clathrin through x-ray diffraction analysis. The intrinsically disordered clathrin binding box of arrestin2 interacts with a groove between blades 1 and 2 in the clathrin β-propeller domain, whereas an 8-amino acid splice loop found solely in the long isoform of arrestin2 (arrestin2L) interacts with a binding pocket formed by blades 4 and 5 in clathrin. The apposition of the two binding sites in arrestin2L suggests that they are exclusive and may function in higher order macromolecular structures. Biochemical analysis demonstrates direct binding of clathrin to the splice loop in arrestin2L, whereas functional analysis reveals that both binding domains contribute to the receptor-dependent redistribution of arrestin2L to clathrin-coated pits. Mutagenesis studies reveal that the clathrin binding motif in the splice loop is (L/I)2GXL. Taken together, these data provide a framework for understanding the dynamic interactions between arrestin2 and clathrin and reveal an essential role for this interaction in arrestin-mediated endocytosis.Many transmembrane signaling systems consist of specific G protein-coupled receptors (GPCRs)3 that transduce a diverse array of extracellular stimuli into intracellular signaling events (1). GPCRs modulate the activity of numerous effector molecules and regulate multiple biological functions including neurotransmission, sensory perception, cardiovascular function, development, and cell growth and differentiation (2). To ensure that extracellular stimuli are translated into intracellular signals of appropriate magnitude and duration, these signaling cascades are tightly regulated. GPCRs are subject to three principle modes of regulation; 1) desensitization, in which a receptor becomes refractory to continued stimuli; 2) endocytosis, where receptors are removed from the cell surface; 3) down-regulation, where total receptor levels are decreased (3, 4). Agonist-dependent regulation is primarily mediated by GPCR kinases that specifically phosphorylate activated GPCRs and initiate the recruitment of arrestins. Arrestins are divided into two major classes, visual and non-visual, based on their localization and function. The non-visual arrestins, arrestin2 and 3 (also termed β-arrestin1 and -2, respectively), are broadly distributed and function in multiple processes including GPCR desensitization, trafficking, and signaling (46).Initial structural insight on arrestins was provided by the x-ray crystal structure of bovine arrestin1 (7, 8), whereas the crystal structures of C-terminal-truncated (9) and wild type (10) bovine arrestin2 and salamander arrestin4 (11) have also been solved. In general, arrestins are composed of two major domains made up of β strands and connecting loops that are held together by a polar core region consisting of buried salt bridges. It has been proposed that arrestins adopt an active conformation upon binding to phosphorylated receptors, which disrupts the polar core resulting in the release of the C-terminal tail (12). Disruption of the polar core by point mutation of Arg-169 generates a constitutively active arrestin2, which mimics the active state. This mutated arrestin binds to the β2-adrenergic receptor (β2AR) in a phosphorylation-independent manner, induces internalization of a δ-opioid receptor lacking phosphorylation sites (13), and has increased binding to clathrin and AP-2 (14).A role for non-visual arrestins in GPCR endocytosis was first described for the β2AR (15, 16), although it is now evident that arrestins regulate the trafficking of multiple GPCRs as well as additional classes of receptors (4). An early step in this process involves arrestin binding to an activated phosphorylated receptor that enhances arrestin interaction with the endocytic proteins, clathrin, and AP-2 (16, 17). An additional important step in this process involves arrestin interaction with phosphoinositides such as phosphatidylinositol diphosphate and trisphosphate (18). Although the dynamics of these interactions have not been studied, arrestin2 and -3 have been shown to interact specifically and stoichiometrically with clathrin (16). Furthermore, fluorescence microscopy reveals that activated β2AR, arrestin2, clathrin, and AP-2 all colocalize upon receptor stimulation (16). The primary clathrin binding determinant in arrestin2, LIELD, spans residues 376–380 and is located in an extended disordered loop that immediately precedes the final C-terminal β-strand (10, 19). This region, the clathrin binding box, is consistent with a consensus motif, LϕXϕ(D/E) (where ϕ is a bulky hydrophobic residue, and X represents any polar amino acid), established in other clathrin-binding proteins including AP-2 (20), AP180 (21), amphiphysin (22), and epsin (23). Importantly, the mutation of this motif in arrestin3 and its deletion in arrestin2 significantly disrupts clathrin binding and receptor endocytosis (14, 19). A mutagenesis study of clathrin localized an arrestin binding site to the N-terminal domain of the clathrin heavy chain, specifically residues Glu-89, Lys-96, and Lys-98 (24). Moreover, a crystal structure of clathrin-(1–363) in complex with an arrestin3 peptide (residues 369–381) supports the mutagenesis data and the predicted location of the arrestin-clathrin interaction site (25).To further elucidate the mechanisms involved in mediating arrestin/clathrin interaction, we have determined the crystal structure of clathrin with the short (arrestin2S) and long (arrestin2L) isoforms of arrestin2, which differ by an 8-amino acid insert between β strands 18 and 19 (26). Our results identify an additional and unique interaction encoded in the arrestin2L isoform that is distinct from the previously well characterized interaction involving the LϕXϕ(D/E) motif. Specifically, we observe that the 8 amino acid splice loop in arrestin2L interacts with a pocket formed by blades 4 and 5 in clathrin. Biochemical and cell biological analysis confirm a role for both binding sites in arrestin2L/clathrin interaction and demonstrate an essential role of these interactions in arrestin-mediated GPCR endocytosis.  相似文献   
10.
The recycling of internalized signaling receptors, which has direct functional consequences, is subject to multiple sequence and biochemical requirements. Why signaling receptors recycle via a specialized pathway, unlike many other proteins that recycle by bulk, is a fundamental unanswered question. Here, we show that these specialized pathways allow selective control of signaling receptor recycling by heterologous signaling. Using assays to visualize receptor recycling in living cells, we show that the recycling of the beta‐2 adrenergic receptor (B2AR), a prototypic signaling receptor, is regulated by Src family kinases. The target of Src is cortactin, an essential factor for B2AR sorting into specialized recycling microdomains on the endosome. Phosphorylation of a single cortactin residue, Y466, regulates the rate of fission of B2AR recycling vesicles from these microdomains and, therefore, the rate of delivery of B2AR to the cell surface. Together, our results indicate that actin‐stabilized microdomains that mediate signaling receptor recycling can serve as a functional point of convergence for crosstalk between signaling pathways.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号