全文获取类型
收费全文 | 74篇 |
免费 | 6篇 |
专业分类
80篇 |
出版年
2021年 | 2篇 |
2019年 | 4篇 |
2017年 | 1篇 |
2016年 | 2篇 |
2015年 | 1篇 |
2014年 | 4篇 |
2013年 | 3篇 |
2012年 | 7篇 |
2011年 | 2篇 |
2010年 | 4篇 |
2009年 | 3篇 |
2008年 | 3篇 |
2007年 | 2篇 |
2006年 | 5篇 |
2005年 | 4篇 |
2004年 | 5篇 |
2003年 | 4篇 |
2002年 | 2篇 |
2001年 | 2篇 |
1999年 | 2篇 |
1998年 | 1篇 |
1996年 | 2篇 |
1992年 | 2篇 |
1991年 | 3篇 |
1987年 | 1篇 |
1986年 | 1篇 |
1985年 | 1篇 |
1982年 | 3篇 |
1981年 | 1篇 |
1975年 | 2篇 |
1967年 | 1篇 |
排序方式: 共有80条查询结果,搜索用时 15 毫秒
1.
Angiogenesis represents the outgrowth of new blood vessels from existing ones, a physiologic process that is vital to supply nourishment to newly forming tissues during development and tissue remodeling and repair (wound healing). Regulation of angiogenesis in the healthy body occurs through a fine balance of angiogenesis-stimulating factors and angiogenesis inhibitors. When this balance is disturbed, excessive or deficient angiogenesis can result and contribute to development of a wide variety of pathological conditions. The therapeutic stimulation or suppression of angiogenesis could be the key to abrogating these diseases. In recent years, tissue engineering has emerged as a promising technology for regenerating tissues or organs that are diseased beyond repair. Among the critical challenges that deter the practical realization of the vision of regenerating functional tissues for clinical implantation, is how tissues of finite size can be regenerated and maintained viable in the long-term. Since the diffusion of nutrients and essential gases to cells, and removal of metabolic wastes is typically limited to a depth of 150–250 µm from a capillary (3–10 cells thick), tissue constructs must mandatorily permit in-growth of a blood capillary network to nourish and sustain the viability of cells within. The purpose of this article is to provide an overview of the role and significance of hyaluronan (HA), a glycosaminoglycan (GAG) component of connective tissues, in physiologic and pathological angiogenesis, its applicability as a therapeutic to stimulate or suppress angiogenesis in situ within necrotic tissues in vivo, and the factors determining its potential utility as a pro-angiogenic stimulus that will enable tissue engineering of neo-vascularized and functional tissue constructs for clinical use.Key words: angiogenesis, hyaluronan, oligosaccharides, neo-vascularization, tissue engineering, regenerative medicine 相似文献
2.
Bacterial proteins are typically sorted to subcellular regions with distinct physical characteristics that serve as cellular 'addresses', but many proteins are evidently sorted to specific areas that lack any apparent unique identity. Recent work in Bacillus subtilis suggests that such proteins may be localized by interacting with extracellular domains of proteins in an adjacent cellular compartment. 相似文献
3.
P Sreenivasula Reddy A Bhagyalakshmi R Ramamurthi 《Archives internationales de physiologie et de biochimie》1986,94(3):193-195
The concentration of haemolymph sugar and the hyperglycaemic activity of eyestalk extract was measured six times (8, 12, 16, 20 and 4 h) over a 24-h period. The concentration of haemolymph sugar and hyperglycaemic activity of eyestalk extract was higher during the night (0 h through 8 h) than that noted in day time (12 h). The variations are closely related to the activity of the animal. 相似文献
4.
Ana Yepes Johannes Schneider Benjamin Mielich Gudrun Koch Juan‐Carlos García‐Betancur Kumaran S. Ramamurthi Hera Vlamakis Daniel López 《Molecular microbiology》2012,86(2):457-471
Biofilm formation in Bacillus subtilis requires the differentiation of a subpopulation of cells responsible for the production of the extracellular matrix that structures the biofilm. Differentiation of matrix‐producing cells depends, among other factors, on the FloT and YqfA proteins. These proteins are present exclusively in functional membrane microdomains of B. subtilis and are homologous to the eukaryotic lipid raft‐specific flotillin proteins. In the absence of FloT and YqfA, diverse proteins normally localized to the membrane microdomains of B. subtilis are not functional. Here we show that the absence of FloT and YqfA reduces the level of the septal‐localized protease FtsH. The flotillin homologues FloT and YqfA are occasionally present at the midcell in exponentially growing cells and the absence of FloT and YqfA negatively affects FtsH concentration. Biochemical experiments indicate a direct interaction between FloT/YqfA and FtsH. Moreover, FtsH is essential for the differentiation of matrix producers and hence, biofilm formation. This molecular trigger of biofilm formation may therefore be used as a target for the design of new biofilm inhibitors. Accordingly, we show that the small protein SpoVM, known to bind to and inhibit FtsH activity, inhibits biofilm formation in B. subtilis and other distantly related bacteria. 相似文献
5.
A synonymous mutation in Yersinia enterocolitica yopE affects the function of the YopE type III secretion signal
下载免费PDF全文

Yersinia spp. inject virulence proteins called Yops into the cytosol of target eukaryotic cells in an effort to evade phagocytic killing via a dedicated protein-sorting pathway termed type III secretion. Previous studies have proposed that, unlike other protein translocation mechanisms, Yops are not recognized as substrates for secretion via a solely proteinaceous signal. Rather, at least some of this information may be encoded within yop mRNA. Herein, we report that the first seven codons of yopE, when fused to the reporter protein neomycin phosphotransferase (Npt), are sufficient for the secretion of YopE1-7-Npt when type III secretion is induced in vitro. Systematic mutagenesis of yopE codons 1 to 7 reveals that, like yopQ, codons 2, 3, 5, and 7 are sensitive to mutagenesis, thereby defining the first empirical similarity between the secretion signals of two type III secreted substrates. Like that of yopQ, the secretion signal of yopE exhibits a bipartite nature. This is manifested by the ability of codons 8 to 15 to suppress point mutations in the minimal secretion signal that change the amino acid specificities of particular codons or that induce alterations in the reading frame. Further, we have identified a single nucleotide position in codon 3 that, when mutated, conserves the predicted amino acid sequence of the YopE1-7-Npt but abrogates secretion of the reporter protein. When introduced into the context of the full-length yopE gene, the single-nucleotide mutation reduces the type III injection of YopE into HeLa cells, even though the predicted amino acid sequence remains the same. Thus, yopE mRNA appears to encode a property that mediates the type III injection of YopE. 相似文献
6.
7.
Roberto?H?Higa Roberto?C?Togawa Arnaldo?J?Montagner Juliana?CF?Palandrani Igor?KS?Okimoto Paula?R?Kuser Michel?EB?Yamagishi Adauto?L?Mancini Goran?NeshichEmail author 《BMC bioinformatics》2004,5(1):107
Background
The integration of many aspects of protein/DNA structure analysis is an important requirement for software products in general area of structural bioinformatics. In fact, there are too few software packages on the internet which can be described as successful in this respect. We might say that what is still missing is publicly available, web based software for interactive analysis of the sequence/structure/function of proteins and their complexes with DNA and ligands. Some of existing software packages do have certain level of integration and do offer analysis of several structure related parameters, however not to the extent generally demanded by a user. 相似文献8.
Background
Influenza pandemic remains a serious threat to human health. Viruses of avian origin, H5N1, H7N7 and H9N2, have repeatedly crossed the species barrier to infect humans. Recently, a novel strain originated from swine has evolved to a pandemic. This study aims at improving our understanding on the pathogenic mechanism of influenza viruses, in particular the role of non-structural (NS1) protein in inducing pro-inflammatory and apoptotic responses.Methods
Human lung epithelial cells (NCI-H292) was used as an in-vitro model to study cytokine/chemokine production and apoptosis induced by transfection of NS1 mRNA encoded by seven infleunza subtypes (seasonal and pandemic H1, H2, H3, H5, H7, and H9), respectively.Results
The results showed that CXCL-10/IP10 was most prominently induced (> 1000 folds) and IL-6 was slightly induced (< 10 folds) by all subtypes. A subtype-dependent pattern was observed for CCL-2/MCP-1, CCL3/MIP-1α, CCL-5/RANTES and CXCL-9/MIG; where induction by H5N1 was much higher than all other subtypes examined. All subtypes induced a similar temporal profile of apoptosis following transfection. The level of apoptosis induced by H5N1 was remarkably higher than all others. The cytokine/chemokine and apoptosis inducing ability of the 2009 pandemic H1N1 was similar to previous seasonal strains.Conclusions
In conclusion, the NS1 protein encoded by H5N1 carries a remarkably different property as compared to other avian and human subtypes, and is one of the keys to its high pathogenicity. NCI-H292 cells system proves to be a good in-vitro model to delineate the property of NS1 proteins.9.
Lars D. Renner Prahathees Eswaramoorthy Kumaran S. Ramamurthi Douglas B. Weibel 《PloS one》2013,8(12)
In this article we describe two techniques for exploring the relationship between bacterial cell shape and the intracellular organization of proteins. First, we created microchannels in a layer of agarose to reshape live bacterial cells and predictably control their mean cell wall curvature, and quantified the influence of curvature on the localization and distribution of proteins in vivo. Second, we used agarose microchambers to reshape bacteria whose cell wall had been chemically and enzymatically removed. By combining microstructures with different geometries and fluorescence microscopy, we determined the relationship between bacterial shape and the localization for two different membrane-associated proteins: i) the cell-shape related protein MreB of Escherichia coli, which is positioned along the long axis of the rod-shaped cell; and ii) the negative curvature-sensing cell division protein DivIVA of Bacillus subtilis, which is positioned primarily at cell division sites. Our studies of intracellular organization in live cells of E. coli and B. subtilis demonstrate that MreB is largely excluded from areas of high negative curvature, whereas DivIVA localizes preferentially to regions of high negative curvature. These studies highlight a unique approach for studying the relationship between cell shape and intracellular organization in intact, live bacteria. 相似文献
10.
Bevan KS Chung Suresh Selvarasu Andrea Camattari Jimyoung Ryu Hyeokweon Lee Jungoh Ahn Hongweon Lee Dong-Yup Lee 《Microbial cell factories》2010,9(1):50