首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1171篇
  免费   40篇
  国内免费   1篇
  1212篇
  2023年   7篇
  2022年   13篇
  2021年   33篇
  2020年   16篇
  2019年   14篇
  2018年   12篇
  2017年   15篇
  2016年   28篇
  2015年   42篇
  2014年   60篇
  2013年   74篇
  2012年   94篇
  2011年   83篇
  2010年   59篇
  2009年   44篇
  2008年   49篇
  2007年   68篇
  2006年   50篇
  2005年   61篇
  2004年   48篇
  2003年   57篇
  2002年   31篇
  2001年   8篇
  2000年   9篇
  1999年   15篇
  1998年   11篇
  1997年   10篇
  1996年   8篇
  1995年   12篇
  1994年   8篇
  1993年   5篇
  1992年   13篇
  1991年   11篇
  1990年   9篇
  1989年   9篇
  1988年   15篇
  1987年   8篇
  1986年   10篇
  1985年   8篇
  1984年   13篇
  1983年   6篇
  1982年   6篇
  1980年   5篇
  1979年   7篇
  1978年   6篇
  1976年   7篇
  1973年   5篇
  1971年   3篇
  1966年   3篇
  1963年   3篇
排序方式: 共有1212条查询结果,搜索用时 15 毫秒
1.
    
Chronic myeloid leukemia (CML) epitomises successful targeted therapy, where inhibition of tyrosine kinase activity of oncoprotein Bcr-Abl1 by imatinib, induces remission in 86% patients in initial chronic phase (CP). However, in acute phase of blast crisis, 80% patients show resistance, 40% among them despite inhibition of Bcr-Abl1 activity. This implies activation of either Bcr-Abl1- independent signalling pathways or restoration of signalling downstream of inactive Bcr-Abl1. In the present study, mass spectrometry and subsequent in silico pathway analysis of differentiators in resistant CML-CP cells identified key differentiators, 14–3-3ε and p38 MAPK, which belong to Bcr-Abl1 pathway. Their levels and activity respectively, indicated active Bcr-Abl1 pathway in CML-BC resistant cells, though Bcr-Abl1 is inhibited by imatinib. Further, contribution of these components to resistance was demonstrated by inhibition of Bcr-Abl1 down-stream signalling by knocking-out of 14–3-3ε and inhibition of p38 MAPK activity. The observations merit clinical validation to explore their translational potential.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12079-021-00647-x.  相似文献   
2.
3.
    
Fucosylated structures participate in a wide range of pathological processes in eukaryotes and prokaryotes. The impact of fucose on microbial pathogenesis, however, has been less appreciated in arthropods of medical relevance. Thus, we used the tick‐borne bacterium Anaplasma phagocytophilum– the agent of human granulocytic anaplasmosis to understand these processes. Here we show that A. phagocytophilum uses α1,3‐fucose to colonize ticks. We demonstrate that A. phagocytophilum modulates the expression of α1,3‐fucosyltransferases and gene silencing significantly reduces colonization of tick cells. Acquisition but not transmission of A. phagocytophilum was affected when α1,3‐fucosyltransferases were silenced during tick feeding. Our results uncover a novel mechanism of pathogen colonization in arthropods. Decoding mechanisms of pathogen invasion in ticks might expedite the development of new strategies to interfere with the life cycle of A. phagocytophilum.  相似文献   
4.

Aim

Tissue inhibitor of metalloproteinase (TIMP2) is involved in the regulation of matrix metalloproteinase 2 (MMP2) and shown to implicate in cancer development and progression. The results from the published studies based on the association between TIMP2 -418 G>C polymorphism and cancer risk are inconsistent. In this meta-analysis, we aimed to evaluate the potential association between TIMP2 -418 G>C polymorphism and cancer risk.

Methodology

We searched PubMed (Medline) and EMBASE web databases to cover all studies based on relationship of TIMP2 -418 G>C polymorphism and risk of cancer until October 2013. The meta-analysis was performed for selected case-control studies and pooled odds ratios (ORs) and 95% confidence intervals (95% CIs) were calculated for all genetic models.

Results

A total of 2225 cancer cases and 2532 controls were included from ten eligible case-control studies. Results from overall pooled analysis suggested no evidence of significant risk between TIMP2 -418 G>C polymorphism and cancer risk in any of the genetic models, such as, allele (C vs. G: OR = 1.293, 95% CI = 0.882 to 1.894, p = 0.188), homozygous (CC vs. GG: OR = 0.940, 95% CI = 0.434 to 2.039, p = 0.876), heterozygous (GC vs. GG: OR = 1.397, 95% CI = 0.888 to 2.198, p = 0.148), dominant (CC+GC vs. GG: OR = 1.387, 95% CI = 0.880 to 2.187, p = 0.159) and recessive (CC vs. GG+GC: OR = 0.901, 95% CI = 0.442 to 1.838, p = 0.774) models. No evidence of publication bias was detected during the analysis.

Conclusions

The present meta-analysis suggests that the TIMP2 -418 G>C polymorphism may not be involved in predisposing risk factor for cancer in overall population. However, future larger studies with group of populations are needed to analyze the possible correlation.  相似文献   
5.
    
The role of inflammatory mediators in dental pulp is unique. The local environment of pulp responds to any changes in the physiology that are highly fundamental, like odontoblast cell differentiation and other secretory activity. The aim of this review is to assess the role of cathelicidins based on their capacity to heal wounds, their immunomodulatory potential, and their ability to stimulate cytokine production and stimulate immune-inflammatory response in pulp and periapex. Accessible electronic databases were searched to find studies reporting the role of cathelicidins in pulpal inflammation and regeneration published between September 2010 and September 2020. The search was performed using the following databases: Medline, Scopus, Web of Science, SciELO and PubMed. The electronic search was performed using the combination of keywords “cathelicidins” and “dental pulp inflammation”. On the basis of previous studies, it can be inferred that LL-37 plays an important role in odontoblastic cell differentiation and stimulation of antimicrobial peptides. Furthermore, based on these outcomes, it can be concluded that LL-37 plays an important role in reparative dentin formation and provides signaling for defense by activating the innate immune system.  相似文献   
6.
Human immunodeficiency virus type 1 (HIV-1) viral protein R (Vpr) plays a crucial role in viral replication and pathogenesis by inducing cell cycle arrest, apoptosis, translocation of preintegration complex, potentiation of glucocorticoid action, impairment of dendritic cell (DC) maturation, and T-cell activation. Recent studies involving the direct effects of Vpr on DCs and T cells indicated that HIV-1 containing Vpr selectively impairs phenotypic maturation, cytokine network, and antigen presentation in DCs and dysregulates costimulatory molecules and cytokine production in T cells. Here, we have further investigated the indirect effect of HIV-1 Vpr(+) virus-infected DCs on the bystander CD8(+) T-cell population. Our results indicate that HIV-1 Vpr(+) virus-infected DCs dysregulate CD8(+) T-cell proliferation and induce apoptosis. Vpr-containing virus-infected DC-mediated CD8(+) T-cell killing occurred in part through enhanced tumor necrosis factor alpha production by infected DCs and subsequent induction of death receptor signaling and activation of the caspase 8-dependent pathway in CD8(+) T cells. Collectively, these results provide evidence that Vpr could be one of the important contributors to the host immune escape by HIV-1 through its ability to dysregulate both directly and indirectly the DC biology and T-cell functions.  相似文献   
7.
    
Pseudomonas aeruginosa (PA) is an environmentally ubiquitous, extracellular, opportunistic pathogen, associated with severe infections of immune-compromised host. We demonstrated earlier the presence of both α2,3- and α2,6-linked sialic acids (Sias) on PA (PA+Sias) and normal human serum is their source of Sias. PA+Sias showed decreased complement deposition and exhibited enhanced association with immune-cells through sialic acid binding immunoglobulin like lectins (Siglecs). Such Sias-siglec-9 interaction between PA+Sias and neutrophils helped to subvert host immunity. Additionally, PA+Sias showed more resistant to β-lactam antibiotics as reflected in their minimum inhibitory concentration required to inhibit the growth of 50% than PA−Sias. Accordingly, we have affinity purified sialoglycoproteins of PA+Sias. They were electrophoresed and identified by matrix-assisted laser desorption-ionization time-of-flight/time-of-flight mass spectrometry analysis. Sequence study indicated the presence of a few α2,6-linked, α2,3-linked, and both α2,3- and α2,6-linked sialylated proteins in PA. The outer membrane porin protein D (OprD), a specialized channel-forming protein, responsible for uptake of β-lactam antibiotics, is one such identified sialoglycoprotein. Accordingly, sialylated (OprD+Sias) and non-sialylated (OprD−Sias) porin proteins were separately purified by using anion exchange chromatography. Sialylation of purified OprD+Sias was confirmed by several analytical and biochemical procedures. Profiling of glycan structures revealed three sialylated N-glycans and two sialylated O-glycans in OprD+Sias. In contrast, OprD−Sias exhibit only one sialylated N-glycans. OprD−Sias interacts with β-lactam antibiotics more than OprD+Sias as demonstrated by surface plasmon resonance study. Lyposome-swelling assay further exhibited that antibiotics have more capability to penetrate through OprD−Sias purified from four clinical isolates of PA. Taken together, it may be envisaged that sialic acids on OprD protein play important role toward the uptake of commonly used antibiotics in PA+Sias. This might be one of the new mechanisms of PA for β-lactam antibiotic uptake.Sialic acids (Sias)1 are nine carbon atom containing acidic residues characteristically found in the terminal position of glycoproteins and glycolipids (14). Structural diversity of sialic acids is because of the modification of one or more hydroxyl groups in various positions of the core structure by different groups like acetyl-, methyl-, sulfate-, lactyl-, or phosphate (1, 57). More than fifty derivatives of Sias has been reported both in vertebrate and invertebrate systems. It functions as ligand for various cellular communications and also act as masking element for glycoconjugates (812).Sialic acid binding immunoglobulins (Ig)-like lectins (siglecs) selectively expressed on the hematopoetic cells and interact with an array of linkage-specific Sias on a glycan structure express on the same cells or other cells (13). Siglecs can also recognize terminal sialylated glycoconjugates on several pathogens (1416). After recognizing, they carry out various functions like internalization, attenuation of inflammation, restraining cellular activation along with inhibition of natural killer cell activation (17).Pseudomonas aeruginosa (PA) is a Gram-negative, rod-shaped bacterium. This human pathogen has remarkable capacity to cause diseases in immune compromised hosts. This colonizing microbial pathogen is responsible for infection in chronic cystic fibrosis, nosocomial infections; severe burn, transplantation, cancer, and AIDS and other immuno-supressed patients (18).We have reported earlier the presence of linkage-specific Sias on PA. Normal human serum (NHS) is possibly one of the sources of these Sias (19). PA utilizes these Sias to interact through siglecs present on the surface of different immune cells. PA+Sias showed enhanced association with neutrophils through α2,3-linked Sias-siglec-9 interaction which facilitated their survival by subverting innate immune function of host (20).The treatment of PA-infected patient depends upon the extent of the disease and the concerned organs. Conventional β-lactam, cephalosporins, and aminoglycosides group of antibiotics are most common for such treatment (21). β-lactam antibiotics inhibit cell wall synthesis by disrupting the synthesis of the peptidoglycan layer of bacterial cell walls (22). When PA showed resistant to β-lactam antibiotics, new generation of β-lactam with increased doses or other broad spectrum antibiotics like tetracyclines or fluoroquinolones are prescribed (23). PA isolates from intensive care unit (ICU) patients in general showed higher rates of β-lactam resistance among other hospitalized patients (24). The increasing frequency of resistance to ceftazidime, piperacillin, imipenem, fluoroquinolone, and aminoglycoside were 36.6%, 22.3%, 22.8%, 23.8%, and 17.8% respectively in PA (25).The outer membrane of Gram-negative bacteria is, in general, semipermeable through which hydrophilic molecules including antibiotics of below exclusion limit size (0.6 kDa) can pass through the channel-forming proteins generally called porins e.g. OprD, OprF, OprG etc. (26, 27). PA shows lower outer membrane permeability with respect to many other Gram-negative bacteria like Acinetobacter baumannii, Stenotrophomonas maltophilia, Burkholderia cepacia, hence the diffusion rate of β-lactam antibiotics is decreased (27).Additionally, PA uses MexA-MexB-OprM, MexC-MexD-OprJ, MexE-MexF-OprN, and MexX-MexY-OprM as efflux pumps along with important regulatory factors MexR/NalB, NfxB, NfxC/MexT, and MexZ respectively on their membrane to pump out undesirable chemicals, detergent and antibiotics (2832). Other Gram-negative bacteria also uses similar types of efflux pumps for such purposes. Moreover, PA produces antibiotic-resistance genes by some mutation (33). Furthermore, β-lactamase and aminoglycoside-modifying enzymes produced by PA are capable of breaking down the antibiotics (34). Alternatively, these enzymes can directly modify the drug. Hence these antibiotics become functionally ineffective (27).The presence of lipopolysaccharides (LPS) containing O-specific polysaccharides with tri-saccharide repeats of 2-acetamido-2,6-dideoxy-d-glucose, 2-acetamido-2,6-dideoxy-d-galactose, and 5-acetamido-3,5,7,9-tetyradeoxy-7-[(R)-3-hydroxybutyramidol]-3-l-glycerol-l-manno-nonulosonic acid are known for PA serogroup O11 (35). The genes for key enzymes required for complex protein glycosylation are found in the genome of PA14 (36). Moreover, glycosylation in PA1244 has been reported in the form of an O-linked glycan in pilin (37). A cluster of seven genes known as the pel genes, encode proteins with similarity to components involved in polysaccharide biogenesis. Among these genes, PelF is a putative glycosyltransferase (GT) of the type IV glycosyltransferase (GT4) family (36). PA secreted sialidase in culture medium (38). Genome search reveals that PA14 has the sialidase gene, which may be responsible for cleaving sialic acids (39). PA1 also has sialic acid transporter gene, which possibly transport sialic acids inside the cells (Gene ID: 17688338, Source: http://www.ncbi.nlm.nih.gov/gene/17688338). Additionally, CMP-sialic acid transferase, which is responsible for converting sialic acids to CMP-sialic acid, was purified from PAO12 (40). This enzyme shows close similarity with the enzyme found in E. coli.However, PA being such a notorious organism, it might have many other different mechanisms to fight against antibiotics for their survival. Therefore, it is worthwhile to explore newer mechanism to understand how antibiotics penetrate inside this bacterium. Here we addressed the following questions. Does sialylation of glycoproteins demonstrated on PA play any role in the entry of antibiotics that might facilitate their survival within host?Accordingly, we have affinity purified a few sialoglycoproteins from PA. Sequence analysis identified twenty six α2,3- and α2,6-linked sialoglycoproteins. One such identified sialoglycoprotein is OprD porin protein. The presence of Sias on OprD was conclusively confirmed. We have demonstrated that Sias on OprD protein isolated four different clinical isolates hampered its interaction with β-lactam antibiotics. This might be one of the new mechanisms for β-lactam antibiotic resistance of PA and thereby facilitates their survival in host.  相似文献   
8.
9.
Rama S. Singh 《Genetics》1979,93(4):997-1018
An investigation, similar to our previously reported xanthine dehydrogenase study, was undertaken to examine the extent of hidden genic variation at nine loci (five larval proteins, three esterases and one aldehyde oxidase) by sequential application of various electrophoretic criteria employing pH, gel concentration and buffer variation. Polymorphic loci appear to fall into two distinct groups: weakly polymorphic, including larval protein 6, 7, 8, 10 and 13 and esterase-1 and -6; and highly polymorphic, including esterase-5, Xdh and possibly Ao. Monomorphic loci may belong to a third group different from all polymorphic loci. Bogota, a geographical isolate that is reproductively isolated from the mainland population, was found to be genetically distinct at four of the ten loci examined in detail so far, including Xdh, whereas previously it was found to be genetically distinct at none. These results are discussed in the light of balancing selection, neutral and mutation-selection hypotheses of genic variation in natural populations.  相似文献   
10.
An Alcaligenes sp. BR60, isolated from surface runoff waters of the Hyde Park industrial landfill, contained a novel 85 kb catabolic plasmid (pBR60) functional in 3-chlorobenzoate (3Cba) degradation. The plasmid exhibited a spontaneous 3.2% frequency of deletion of a 14 kb fragment specifying 3Cba degradation. The deletion mutant BR40 and mitomycin C cured strains were not able to grow on 3Cba and had reversion frequencies of less than 10-10 cell-1 generation-1. Transformation or conjugation of pBR60 into cured strains restored catabolic activity. An EcoRI, BgIII, HindIII and SaII restriction map of the deletion region was constructed, and EcoRI and HindIII fragments spanning the deletion region of the plasmid were cloned in pUC18. Conjugation of resistance plasmid R 68.45 into Alcaligenes sp. BR60, with selection on antibiotics, resulted in the elimination of pBR60 and maintenance of unaltered R68.45. In 30% of the exconjugants, 3Cba degradative capacity was retained, although variation in the regulation of 3Cba degradation was observed in these strains. Hybridization of deletion region fragments to BgIII digested total DNA of BR60 and the R68.45 cured exconjugants revealed the presence of pBR60 deletion region sequences in the chromosome of exconjugants. Hybridization also revealed a repeated sequence flanking the deletion region of pBR60. Selection on 4-chlorobenzoate as a sole source of carbon and energy resulted in the isolation of 4Cba+ mutants of Alcaligenes sp. BR60.Abbreviations 3 and 4 Cba chlorobenzoic acid isomers and growth phenotypes - HPLC high pressure liquid chromatography - ATCC American Type Culture Collection  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号