首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   0篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   3篇
  2012年   4篇
  2011年   6篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2005年   3篇
  2004年   2篇
  2003年   1篇
  2001年   3篇
  2000年   1篇
  1990年   1篇
  1985年   1篇
排序方式: 共有39条查询结果,搜索用时 15 毫秒
1.
Alveolar fibrin generation has been suggested to possess strong surfactant-inhibitory potency. In perfused rabbit lungs, fibrin formation in the alveolar space was induced by sequential ultrasonic aerosolization of fibrinogen and thrombin, and the efficacy of rescue administration of surfactant and urokinase was investigated. Ventilation-perfusion (VA/Q) distribution was assessed by the multiple inert gas elimination technique. Aerosolization of fibrinogen (approximately 20 mg/kg body wt) increased shunt flow to approximately 7%. Sequential nebulization of fibrinogen and thrombin (1.3 U/kg body wt) caused alveolar fibrin deposition, documented immunohistologically, and provoked marked shunt flow, progressing to approximately 22% at the end of the experiments. The hemodynamics were virtually unchanged. Rescue aerosolization of natural bovine surfactant (15 mg/kg body wt) or urokinase-type plasminogen activator (4,500 U/kg body wt), undertaken after fibrin formation, improved gas exchange but progressive shunt flow still occurred (efficacy, surfactant > urokinase). In contrast, conebulization of surfactant and urokinase reversed shunt flow to approximately 7%, with an increased appearance of normal VA/Q matching. We conclude that alveolar fibrin formation is a potent surfactant-inhibitory mechanism in intact lungs, provoking severe VA/Q mismatch with a predominance of shunt flow, and that rescue aerosolization of surfactant plus urokinase may offer restoration of gas exchange under these conditions.  相似文献   
2.

Background

The aim of the study was to assess the chronic effects of combined phosphodiesterase 3/4 inhibitor tolafentrine, administered by inhalation, during monocrotaline-induced pulmonary arterial hypertension (PAH) in rats.

Methods

CD rats were given a single subcutaneous injection of monocrotaline to induce PAH. Four weeks after, rats were subjected to inhalation of tolafentrine or sham nebulization in an unrestrained, whole body aerosol exposure system. In these animals (i) the acute pulmonary vasodilatory efficacy of inhaled tolafentrine (ii) the anti-remodeling effect of long-term inhalation of tolafentrine (iii) the effects of tolafentrine on the expression profile of 96 genes encoding cell adhesion and extracellular matrix regulation were examined. In addition, the inhibitory effect of tolafentrine on ex vivo isolated pulmonary artery SMC cell migration was also investigated.

Results

Monocrotaline injection provoked severe PAH (right ventricular systolic pressure increased from 25.9 ± 4.0 to 68.9 ± 3.2 after 4 weeks and 74.9 ± 5.1 mmHg after 6 weeks), cardiac output depression and right heart hypertrophy. The media thickness of the pulmonary arteries and the proportion of muscularization of small precapillary resistance vessels increased dramatically, and the migratory response of ex-vivo isolated pulmonary artery smooth muscle cells (PASMC) was increased. Micro-arrays and subsequent confirmation with real time PCR demonstrated upregulation of several extracellular matrix regulation and adhesion genes, such as matrixmetalloproteases (MMP) 2, 8, 9, 10, 11, 12, 20, Icam, Itgax, Plat and serpinb2. When chronically nebulized from day 28 to 42 (12 daily aerosol maneuvers), after full establishment of severe pulmonary hypertension, tolafentrine reversed about 60% of all hemodynamic abnormalities, right heart hypertrophy and monocrotaline-induced structural lung vascular changes, including the proportion of pulmonary artery muscularization. The upregulation of extracellular matrix regulation and adhesion genes was reduced by nearly 80% by inhalation of the tolafentrine. When assessed in vitro, tolafentrine blocked the enhanced PASMC migratory response.

Conclusion

In conclusion, we demonstrate for the first time that inhalation of combined PDE3/4 inhibitor reverses pulmonary hypertension fully developed in response to monocrotaline in rats. This "reverse-remodeling" effect includes structural changes in the lung vascular wall and key molecular pathways of matrix regulation, concomitant with 60% normalization of hemodynamics.  相似文献   
3.
Inhaled prostanoids and phosphodiesterase (PDE) inhibitors have been suggested for treatment of severe pulmonary hypertension. In catheterized rabbits with acute pulmonary hypertension induced by continuous infusion of the stable thromboxane analogue U46619, we asked whether sildenafil (PDE1/5/6 inhibitor), motapizone (PDE3 inhibitor) or 8-Methoxymethyl-IBMX (PDE1 inhibitor) synergize with inhaled iloprost. Inhalation of iloprost caused a transient pulmonary artery pressure decline, levelling off within <20 min, without significant changes in blood gases or systemic hemodynamics. Infusion of 8-Methoxymethyl-IBMX, motapizone and sildenafil caused each a dose-dependent decrease in pulmonary artery pressure, with sildenafil possessing the highest efficacy and at the same time selectivity for the pulmonary circulation. When combining a per se ineffective dose of each PDE inhibitor (200 μg/kg × min 8-Methoxymethyl-IBMX, 1 μg/kg × min sildenafil, 5 μg/kg × min motapizone) with subsequent iloprost nebulization, marked amplification of the prostanoid induced pulmonary vasodilatory response was noted and the area under the curve of PPA reduction was nearly threefold increased with all approaches, as compared to sole iloprost administration. Further amplification was achieved with the combination of inhaled iloprost with sildenafil plus motapizone, but not with sildenafil plus 8MM-IBMX. Systemic hemodynamics and gas exchange were not altered for all combinations. We conclude that co-administration of minute systemic doses of selective PDE inhibitors with inhaled iloprost markedly enhances and prolongs the pulmonary vasodilatory response to inhaled iloprost, with maintenance of pulmonary selectivity and ventilation perfusion matching. The prominent effect of sildenafil may be operative via both PDE1 and PDE5, and is further enhanced by co-application of a PDE3 inhibitor.  相似文献   
4.
Marek’s disease virus (MDV) is an alphaherpesvirus that causes immunosuppression and deadly lymphoma in chickens. Lymphoid organs play a central role in MDV infection in animals. B-cells in the bursa of Fabricius facilitate high levels of MDV replication and contribute to dissemination at early stages of infection. Several studies investigated host responses in bursal tissue of MDV-infected chickens; however, the cellular responses specifically in bursal B-cells has never been investigated. We took advantage of our recently established in vitro infection system to decipher the cellular responses of bursal B-cells to infection with a very virulent MDV strain. Here, we demonstrate that MDV infection extends the survival of bursal B-cells in culture. Microarray analyses revealed that most cytokine/cytokine-receptor-, cell cycle- and apoptosis-associated genes are significantly down-regulated in these cells. Further functional assays validated these strong effects of MDV infections on cell cycle progression and thus, B-cell proliferation. In addition, we confirmed that MDV infections protect B-cells from apoptosis and trigger an accumulation of the autophagy marker Lc3-II. Taken together, our data indicate that MDV-infected bursal B-cells show hallmarks of a senescence-like phenotype, leading to a prolonged B-cell survival. This study provides an in-depth analysis of bursal B-cell responses to MDV infection and important insights into how the virus extends the survival of these cells.  相似文献   
5.
6.
There is current discussion whether reactive oxygen species are up- or downregulated in the pulmonary circulation during hypoxia, from which sources (i.e., mitochondria or NADPH oxidases) they are derived, and what the downstream targets of ROS are. We recently showed that the NADPH oxidase homolog NOX4 is upregulated in hypoxia-induced pulmonary hypertension in mice and contributes to the vascular remodeling in pulmonary hypertension. We here tested the hypothesis that NOX4 regulates K(v) channels via an increased ROS formation after prolonged hypoxia. We showed that (1) NOX4 is upregulated in hypoxia-induced pulmonary hypertension in rats and isolated rat pulmonary arterial smooth muscle cells (PASMC) after 3days of hypoxia, and (2) that NOX4 is a major contributor to increased reactive oxygen species (ROS) after hypoxia. Our data indicate colocalization of K(v)1.5 and NOX4 in isolated PASMC. The NADPH oxidase inhibitor and ROS scavenger apocynin as well as NOX4 siRNA reversed the hypoxia-induced decrease in K(v) current density whereas the protein levels of the channels remain unaffected by siNOX4 treatment. Determination of cysteine oxidation revealed increased NOX4-mediated K(v)1.5 channel oxidation. We conclude that sustained hypoxia decreases K(v) channel currents by a direct effect of a NOX4-derived increase in ROS.  相似文献   
7.
We employed ultrasonic nebulization for homogeneous alveolar tracer deposition into ventilated perfused rabbit lungs. (22)Na and (125)I-albumin transit kinetics were monitored on-line with gamma detectors placed around the lung and the perfusate reservoir. [(3)H]mannitol was measured by repetitive counting of perfusion fluid samples. Volume of the alveolar epithelial lining fluid was estimated with bronchoalveolar lavage with sodium-free isosmolar mannitol solutions. Sodium clearance rate was -2.2 +/- 0.3%/min. This rate was significantly reduced by preadministration of ouabain/amiloride and enhanced by pretreatment with aerosolized terbutaline. The (125)I-albumin clearance rate was -0.40 +/- 0.05%/min. The appearance of [(3)H]mannitol in the perfusate was not influenced by ouabain/amiloride or terbutaline but was markedly enhanced by pretreatment with aerosolized protamine. An epithelial lining fluid volume of 1.22 +/- 0.21 ml was calculated in control lungs. Fluid absorption rate was 1.23 microl x g lung weight(-1) x min(-1), which was blunted after pretreatment with ouabain/amiloride. We conclude that alveolar tracer loading by aerosolization is a feasible technique to assess alveolar epithelial barrier properties in aerated lungs. Data on active and passive sodium flux, paracellular solute transit, and net fluid absorption correspond well to those in previous studies in fluid-filled lungs; however, albumin clearance rates were markedly higher in the currently investigated aerated lungs.  相似文献   
8.
Exhaled H2O2 is considered an indicator of lung inflammatory and oxidative stress. Moreover, H2O2 may be involved in signal transduction processes. It is not fully elucidated to what extent (i) H2O2 escapes from the intravascular compartment, and (ii) pulmonary H2O2 generation and nasopharyngeal H2O2 generation contribute to exhaled H2O2. We investigated H2O2 concentrations in breath condensate from isolated buffer-perfused and ventilated rabbit lungs, and from both intubated and spontaneously breathing rabbits with a horseradish peroxidase/2',7'dichlorofluorescin assay. For the perfused lungs, a H2O2 concentration of 58 +/- 19 nM was found. Addition of H2O2 to the buffer fluid resulted in only minute appearance in the exhaled air (<0.001%). Levels of exhaled H2O2 in intubated rabbits and perfused lungs were virtually identical. Nearly ten-fold higher levels were detected in spontaneously breathing rabbits. Decreasing the inspired oxygen concentration from 21% to 1% resulted in a tendency toward decreased H2O2 exhalation in perfused lungs. In contrast, phorbol-12-myristate-13-acetate (PMA) prompted a approximately 4-fold increase in H2O2 exhalation. We conclude that the horseradish peroxidase/2',7'dichlorofluorescin assay is a feasible technique to measure H2O2 in exhaled breath condensate in rabbits. When collecting exhaled air via the tracheal tube, the signal represents pulmonary H2O2 generation with the contribution of the remaining body being negligible.  相似文献   
9.

Rationale

Chronic obstructive pulmonary disease (COPD) is a widespread disease, with no curative therapies available. Recent findings suggest a key role of NO and sGC-cGMP signaling for the pathogenesis of the disease. Previous data suggest a downregulation/inactivation of the cGMP producing soluble guanylate cyclase, and sGC stimulation prevented cigarette smoke-induced emphysema and pulmonary hypertension (PH) in mice. We thus aimed to investigate if the inhibition of the cGMP degrading phosphodiesterase (PDE)5 has similar effects. Results were compared to the effects of a PDE 4 inhibitor (cAMP elevating) and a combination of both.

Methods

C57BL6/J mice were chronically exposed to cigarette smoke and in parallel either treated with Tadalafil (PDE5 inhibitor), Piclamilast (PDE4 inhibitor) or both. Functional measurements (lung compliance, hemodynamics) and structural investigations (alveolar and vascular morphometry) as well as the heart ratio were determined after 6 months of tobacco smoke exposure. In addition, the number of alveolar macrophages in the respective lungs was counted.

Results

Preventive treatment with Tadalafil, Piclamilast or a combination of both almost completely prevented the development of emphysema, the increase in lung compliance, tidal volume, structural remodeling of the lung vasculature, right ventricular systolic pressure, and right ventricular hypertrophy induced by cigarette smoke exposure. Single, but not combination treatment prevented or reduced smoke-induced increase in alveolar macrophages.

Conclusion

Cigarette smoke-induced emphysema and PH could be prevented by inhibition of the phosphodiesterases 4 and 5 in mice.  相似文献   
10.

Background

Recent clinical studies show that tyrosine kinase inhibitors slow the rate of lung function decline and decrease the number of acute exacerbations in patients with Idiopathic Pulmonary Fibrosis (IPF). However, in the murine bleomycin model of fibrosis, not all tyrosine kinase signaling is detrimental. Exogenous ligands Fibroblast Growth Factor (FGF) 7 and 10 improve murine lung repair and increase survival after injury via tyrosine kinase FGF receptor 2b-signaling. Therefore, the level and location of FGF/FGFR expression as well as the exogenous effect of the most highly expressed FGFR2b ligand, FGF1, was analyzed on human lung fibroblasts.

Methods

FGF ligand and receptor expression was evaluated in donor and IPF whole lung homogenates using western blotting and qPCR. Immunohistochemistry for FGF1 and FGFR1/2/3/4 were performed on human lung tissue. Lastly, the effects of FGF1, a potent, multi-FGFR ligand, were studied on primary cultures of IPF and non-IPF donor fibroblasts. Western blots for pro-fibrotic markers, proliferation, FACS for apoptosis, transwell assays and MetaMorph analyses on cell cultures were performed.

Results

Whole lung homogenate analyses revealed decreased FGFR b-isoform expression, and an increase in FGFR c-isoform expression. Of the FGFR2b-ligands, FGF1 was the most significantly increased in IPF patients; downstream targets of FGF-signaling, p-ERK1/2 and p-AKT were also increased. Immunohistochemistry revealed FGF1 co-localization within basal cell sheets, myofibroblast foci, and Surfactant protein-C positive alveolar epithelial type-II cells as well as co-localization with FGFR1, FGFR2, FGFR3, FGFR4 and myofibroblasts expressing the migratory marker Fascin. Both alone and in the presence of heparin, FGF1 led to increased MAPK-signaling in primary lung fibroblasts. While smooth muscle actin was unchanged, heparin + FGF1 decreased collagen production in IPF fibroblasts. In addition, FGF1 + heparin increased apoptosis and cell migration. The FGFR inhibitor (PD173074) attenuated these effects.

Conclusions

Strong expression of FGF1/FGFRs in pathogenic regions of IPF suggest that aberrant FGF1-FGFR signaling is increased in IPF patients and may contribute to the pathogenesis of lung fibrosis by supporting fibroblast migration and increased MAPK-signaling.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-015-0242-2) contains supplementary material, which is available to authorized users.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号