首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   2篇
  2024年   1篇
  2015年   3篇
  2012年   3篇
  2010年   1篇
  2009年   1篇
  2007年   1篇
  2002年   1篇
  2000年   2篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
The anode/electrolyte interface behavior, and by extension, the overall cell performance of sodium-ion batteries is determined by a complex interaction of processes that occur at all components of the electrochemical cell across a wide range of size- and timescales. Single-scale studies may provide incomplete insights, as they cannot capture the full picture of this complex and intertwined behavior. Broad, multiscale studies are essential to elucidate these processes. Within this perspectives article, several analytical and theoretical techniques are introduced, and described how they can be combined to provide a more complete and comprehensive understanding of sodium-ion battery (SIB) performance throughout its lifetime, with a special focus on the interfaces of hard carbon anodes. These methods target various length- and time scales, ranging from micro to nano, from cell level to atomistic structures, and account for a broad spectrum of physical and (electro)chemical characteristics. Specifically, how mass spectrometric, microscopic, spectroscopic, electrochemical, thermodynamic, and physical methods can be employed to obtain the various types of information required to understand battery behavior will be explored. Ways are then discussed how these methods can be coupled together in order to elucidate the multiscale phenomena at the anode interface and develop a holistic understanding of their relationship to overall sodium-ion battery function.  相似文献   
5.
Seven pseudotripeptides with the common structure Bz-His-[CO-N(CH2)n-X]Gly-His-NH2 were synthesized on the solid phase using the Fmoc-strategy, trityl protection for both His residues and Boc- or -OBut-protection for N-aminoalkyl- and N-carboxyalkyl residues, respectively. Functionalized N-alkyl glycyl peptides were formed on the solid phase by amination of a bromoacetyl dipeptide. All seven pseudotripeptides are able to form chelate complexes with the metal ions Zn2+, Ni2+, Cu2+ and Co2+. The existence of monomeric 1:1 complexes for these pseudopeptides was calculated from the MW estimated by MALDI-MS and from the isotope distribution pattern estimated by ESI.  相似文献   
6.
Biofilm mats appear in salterns distinctively during the monsoon season when the salinity decreases below 12 percentile salinity units and within a short period cover the entire surface area of the saltern. A study was carried out in two salterns viz. Nerul and Curca to find a possible reason for the rapid proliferation of these solar biofilms. Out of the 125 bacteria isolated from these biofilms, 16 produced indole-3-acetic acid (IAA). Rapid in-situ assay with Salkowski reagent and HPLC analysis confirmed the IAA production. Four isolates consistently produced high IAA concentrations ranging from 9.5 to 14.2 μg/mL in the presence of 4 mg/mL tryptophan concentrations in the growth media. The IAA-producing bacteria were Aeromonas aquariorum (N2), Pseudomonas alcaliphila (N3), Vibrio diazotrophicus (N6) and Pseudomonas pachastrellae (C3). These four IAA-producing bacteria also produced other growth promoting factors like ammonia. Three isolates produced siderophores and were phosphate solubilizers. There was enhancement in the growth of Cicer arietinum (length of the shoot and root) under axenic conditions and of biofilm mats (r = 0.9, p < 0.001; r = 0.8, p < 0.05 and r = 0.946, p < 0.01, respectively). This is, according to our knowledge, the first report indicating IAA-producing bacteria isolated from biofilms enhancing the proliferation of these biofilm mats in the solar salterns.  相似文献   
7.
Sodium alanate (NaAlH4) is one of the metal complex hydrides most often investigated for use as a hydrogen‐storage material. Doped with transition or rare earth metal compounds, NaAlH4 can absorb and release hydrogen in low and medium temperature ranges with excellent reversibility and cycling stability. The properties of NaAlH4 doped with CeCl3 differ from materials with other dopants, with faster sorption kinetics and a more stable capacity. In this paper, various precursors of Ce are applied to investigate their catalytic effects on the sorption performance of this material. The re‐hydrogenation is found to be completed in approximately 10 min. Although all the Ce precursors investigated in this work result in reversible hydrogen storage materials, desorption kinetics are enhanced upon formation of cerium aluminide (CeAl4) in the composites. While the use of CeAl4 instead of CeCl3 can increase the hydrogen capacity by bypassing the formation of the ineffective NaCl, the highest capacity of 4.9 wt%—close to the theoretical value—is obtained from NaAlH4 doped directly with metallic cerium. Furthermore, dehydriding under back pressures is also investigated to evaluate the H2 desorption rates under practical conditions. At 3 bar H2 pressure, the second desorption step of NaAlH4 is fully suppressed at 150 °C and only 2.5 wt% H was released, whereas at 180 °C the capacity is not much affected, which is interesting for combination in a system with a high‐temperature PEM fuel cell.  相似文献   
8.
9.

Background  

The green fluorescent protein has revolutionized many areas of cell biology and biotechnology since it is widely used in determining gene expression and for localization of protein expression. Expression of recombinant GFP in E. coli K12 host from pBAD24M-GFP construct upon arabinose induction was significantly lower than that seen in E. coli B cells with higher expression at 30°C as compared to 37°C in E. coli K12 hosts. Since OmpT levels are higher at 37°C than at 30°C, it prompted us to modify the OmpT proteolytic sites of GFP and examine such an effect on GFP expression and fluorescence. Upon modification of one of the two putative OmpT cleavage sites of GFP, we observed several folds enhanced fluorescence of GFP as compared to unmodified GFPuv (Wild Type-WT). The western blot studies of the WT and the SDM II GFP mutant using anti-GFP antibody showed prominent degradation of GFP with negligible degradation in case of SDM II GFP mutant while no such degradation of GFP was seen for both the clones when expressed in BL21 cells. The SDM II GFP mutant also showed enhanced GFP fluorescence in other E. coli K12 OmpT hosts like E. coli JM109 and LE 392 in comparison to WT GFPuv. Inclusion of an OmpT inhibitor, like zinc with WT GFP lysate expressed from an E. coli K12 host was found to reduce degradation of GFP fluorescence by two fold.  相似文献   
10.
Summary Seven pseudotripeptides with the common structure Bz-His-ψ[CO−N(CH2)n-X]Gly-His-NH2 were synthesized on the solid phase using the Fmoc-strategy, trityl protection for both His residues and Boc-or-OBut-protection for N-aminoalkyl-and N-carboxyalkyl residues, respectively. Functionalized N-alkyl glycyl peptides were formed on the solid phase by amination of a bromoacetyl dipeptide. All seven pseudotripeptides are able to form chelate complexes with the metal ions Zn2+, Ni2+, Cu2+ and Co2+. The existence of monomeric 1∶1 complexes for these pseudopeptides was calculated from the MW estimated by MALDI-MS and from the isotope distribution pattern estimated by ESI.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号