首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2012年   2篇
  2002年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Raibon  E.  Sauvé  Y.  Carter  D. A.  Gaillard  F. 《Brain Cell Biology》2002,31(1):57-71
Intravitreal injection of the microglia inhibitor tuftsin 1-3 leads to an increase in retinal ganglion cell axonal regeneration into peripheral nerve grafts and a decrease in phagocytic cells in the retina. However, the relation of phagocytic cells and particularly microglia towards axonal regeneration remains unclear. Initially, to assess this, tuftsin 1-3's effect on axonal regeneration was reexamined by doing a dose-response study. Optimal doses were found to be 2.5 μg/ml and 250 μg/ml in rats and hamsters respectively. We then studied retinal phagocytic cells in rats. Microglial cells were classified as resting or activated based on their morphology following OX42 immunolabelling. In controls, most microglial cells were in the resting state. Optic nerve cut led to an increase in the total number of microglia and a ten-fold elevation in the proportion of activated cells; changes were more pronounced at the optic nerve stump. Anastomosis of an autologous segment of sciatic nerve to the stump of the freshly cut optic nerve minimized the overall increase in microglia, and combined with 2.5 μg/ml tuftsin 1-3, lead to a marked blunting of activation. Preservation within the retina of a higher proportion of resting over active form of microglia, and not the prevention of microglial proliferation per se, may be a crucial factor in allowing additional retinal ganglion cell axons to regenerate into peripheral nerve grafts.  相似文献   
2.
The AMP-activated protein kinase (AMPK) is a serine/threonine protein kinase that acts as a sensor of cellular energy status switch regulating several systems including glucose and lipid metabolism. Recently, AMPK has been implicated in the control of skeletal muscle mass by decreasing mTORC1 activity and increasing protein degradation through regulation of ubiquitin-proteasome and autophagy pathways. In this review, we give an overview of the central role of AMPK in the control of skeletal muscle plasticity. We detail particularly its implication in the control of the hypertrophic and atrophic signaling pathways. In the light of these cumulative and attractive results, AMPK appears as a key player in regulating muscle homeostasis and the modulation of its activity may constitute a therapeutic potential in treating muscle wasting syndromes in humans.  相似文献   
3.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号