首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   1篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2010年   2篇
  1998年   1篇
  1993年   2篇
  1991年   2篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有25条查询结果,搜索用时 46 毫秒
1.
Barley aleurone layer cell protoplasts as a transient expression system   总被引:4,自引:0,他引:4  
Protoplasts were prepared from barley aleurone layers using Onozuka cellulase digestion and purification through a Percoll gradient. Protoplasts prepared by this procedure had a viability ranging from 60% to 80% during the first two days of culture. They were responsive to gibberellic acid (GA) as measured by the stimulation of -amylase synthesis. The GA stimulation was counteracted by abscisic acid (ABA). In the presence of polyethylene glycol (PEG), the protoplasts took up exogenously added plasmid DNA containing the reporter gene coding for chloramphenicol acetyl transferase (CAT) linked to a 35S promoter from cauliflower mosaic virus (CaMV) or to barley -amylase gene promoters and expressed CAT activity. Therefore, barley aleurone layer protoplasts are suitable for analysis of hormoneresponsive elements in hydrolase genes.  相似文献   
2.
Studies were conducted on four pyruvate dehydrogenase kinase-containing fractions: purified pyruvate dehydrogenase complex, the dihydrolipoyl transacetylase-protein X-kinase subcomplex (E2.X.K), a kinase fraction (K fraction) prepared from the E2.X.K subcomplex, and a kinase fraction generated by limited trypsin-digestion of E2.X.K. We characterized the gel electrophoresis properties of dissociated subunits (one-dimensional and two-dimensional), the catalytic and ATP binding properties of kinase-containing fractions, and the subunit requirements for kinase binding to and being activated by the transacetylase-protein X subcomplex (E2.X). A significant portion of protein X was retained with the transacetylase core following release of virtually all the kinase. The K fraction had four major bands separated by sodium dodecyl sulfate-slab gel electrophoresis which corresponded to the dihydrolipoyl dehydrogenase, protein X, the trypsin-resistant catalytic subunit of the kinase and a chymotrypsin-resistant subunit which had a high pI and comigrated in one-dimensional systems with the chymotrypsin-sensitive alpha-subunit of the pyruvate dehydrogenase component. While purified kidney complex contained only about three molecules of kinase (determined by [14C]ATP binding), one molecule of E2.X subcomplex activated a large number (greater than 15) molecules of kinase associated with the protein X-containing K fraction. Sephadex G-200 chromatography of the K fraction in the presence of dithiothreitol led to coelution of protein X and kinase subunits. Limited trypsin digestion converted the transacetylase into subdomains and cleaved protein X and the high pI subunit of the kinase. Under those conditions, the intact catalytic subunit of the kinase did not bind to the large inner domain of the transacetylase but could be activated by untreated E2.X subcomplex. Thus, binding of the catalytic subunit of the kinase and its activation by E2.X required either protein X or the lipoyl-bearing outer domain of the transacetylase. In combination, our results suggest that protein X serves to anchor the kinase to the core of the complex.  相似文献   
3.
The effect of the insecticide 2,2-dichlorovinyldimethylphosphate (DDVP) on citric acid fermentation in Aspergillus niger was studied. The appearance of citric acid in the culture medium was increasingly delayed with increasing concentration of the insecticide, and at concentrations at or above 80 μg/ml medium, citric acid production was first observed after 192 h incubation, compared with 96 h in the control flasks. The timing of the maximum rate of citric acid formation was also similarly delayed. DDVP also resulted in a delay in the utilization of inorganic phosphate by the cultures.  相似文献   
4.
Various cultivars of red chilli were collected from a small town named Kunri, located in the province Sindh, Pakistan. This town is a hub of red chilli production in Asia. A total of 69 samples belonging to 6 cultivars were obtained and analysed for the occurrence of aflatoxins and Aspergillus flavus, to explore the potential of resistant and susceptible germplasm. Aflatoxins were detected by thin layer chromatography (TLC) and high performance liquid chromatography (HPLC), while A. flavus was isolated and identified using agar plate, blotter paper, deep freezing and dilution techniques. Molecular characterization using internal transcribed spacer (ITS) 1/4 and A. flavus specific FL1-F/R primers confirmed the identity of A. flavus. The data revealed that 67 and 75% samples contaminated with aflatoxin B1 (AFB1) and with A. flavus, respectively. A highly susceptible chilli cultivar was ‘Nagina’, showing 78.8% frequency of total aflatoxins (1.2–600 μg/kg) and a mean of 87.7 μg/kg for AFB1 and 121.9 μg/kg for total aflatoxins. A. flavus was detected with 93% frequency and 2.14 × 104 colony forming units. In contrast, cultivars ‘Kunri’ and ‘Drooping Type’ were found to be resistant, with low levels of aflatoxins and fungal counts. The study was conducted for the first time to explore two potential cultivars that were less susceptible towards A. flavus and aflatoxin contamination. These cultivars could be preferably cultivated and thereby boost Pakistan’s chilli production.  相似文献   
5.
A cAMP-independent protamine kinase has been purified from extracts of the yeast Candida lipolytica by ion-exchange and affinity chromatography. Two subunits with apparent Mr's of 52,000 and 36,000 were resolved by SDS-PAGE. The purified kinase exhibited about 20% activity with casein and histone Type VII-S as substrates relative to protamine. The enzyme was inactive against other protein substrates tested, and was essentially insensitive to AMP, cAMP, cGMP up to 0.2 mM, the polyamines spermine and spermidine up to 1 mM, N-ethylmaleimide (5 mM), 2-mercaptoethanol (20 mM), or dithiothreitol (2 mM), and several cations like Zn2+, N1+, or Co2+ at 0.1 mM each. Ca2+ at 3 mM inhibited protamine kinase activity by 50%, which was reversed by EGTA.  相似文献   
6.
The pyruvate dehydrogenase kinase consists of a catalytic subunit (Kc) and a basic subunit (Kb) which appear to be anchored to the dihydrolipoyl transacetylase core component (E2) by another subunit, referred to as protein X (Rahmatullah, M., Jilka, J. M., Radke, G. A., and Roche, T. E. (1986) J. Biol. Chem. 261, 6515-6523). We determined the catalytic requirements for reduction and acetylation of the lipoyl moiety in protein X and linked those changes in protein X to regulatory effects on kinase activity. Using fractions prepared by resolution and proteolytic treatments, we evaluated which subunits are required for regulatory effects on kinase activity. With X-KcKb fraction (treated to remove the mercurial agent used in its preparation), we found that the resolved pyruvate dehydrogenase component, the isolated inner domain of E2 (lacking the lipoyl-bearing region of E2), and the dihydrolipoyl dehydrogenase component directly utilize protein X as a substrate. The resulting reduction and acetylation of protein X occurs in association with enhancement of kinase activity. Following tryptic cleavage of E2 and protein X into subdomains, full acetylation of the lipoyl-bearing subdomains of these proteins is retained along with the capacity of acetylating substrates to stimulate kinase activity. All kinase-containing fractions, including those in which the Kb subunit was digested, were inhibited by pyruvate or ADP, alone, and synergistically by the combination suggesting that pyruvate and ADP bind to Kc. Our results suggest that the Kb subunit of the kinase does not contribute to the observed regulatory effects. A dynamic role of protein X in attenuating kinase activity based on changes in the mitochondrial redox and acetylating potentials is considered.  相似文献   
7.
The subunit and subdomain requirements for NADH inhibition as well as Ca+ and spermine activation of the pyruvate dehydrogenaseb phosphatase were analyzed. The transacetylase-protein X subcomplex (E2-X) was required for all three effects. The oligomeric inner domain of the transacetylase did not support any of these regulatory effects. The presence of at least a portion of the outer (lipoyl-bearing) domains of the transacetylase but not the lipoyl-bearing portion of protein X was essential for expression of these regulatory effects on phosphatase activity. The inner domain of protein X may contribute to some effects. The E2-X subcomplex, alone, had no effect on phosphatase activity in the absence of Ca2+, but the subcomplex did support both NADH inhibition and spermine activation in the absence of Ca2+. Studies with peptide substrates established that spermine is directly bound by a phosphatase subunit. With the resolved pyruvate dehydrogenase component (E1b) used as the substrate, the E2-X subcomplex transformed the effect of spermine from inhibiting to stimulating the rate of dephosphorylation by the phosphatase. The above observations suggest that binding of E1b to the E2-X subcomplex alters its presentation to the phosphatase. We also present several observations that are consistent with NADH inhibition of the phosphatase being mediated through a dihydrolipoyl dehydrogenase-dependent reduction of lipoyl moieties in the E2-X subcomplex. Overall, our data establish that the outer, lipoyl-bearing domains of the oligomeric transacetylase core have an essential role in the function and regulation of the pyruvate dehydrogenase phosphatase.  相似文献   
8.
9.
The tilapia Oreochromis niloticus and the silver carp Hypophthalmichthys molitrix were exposed to toxic and non-toxic strains of the cyanobacterium Microcystis aeruginosa in order to determine if cells of the toxic strain were ingested and, if not, by what mechanism they were excluded. Enumeration of cyanobacterial particles before and after exposure to fish showed that there were no significant differences (P<0.05) at the end of the trial between the toxic treatment and the control consisting of toxic M. aeruginosa with no fish. Fish exposed to the non-toxic strain increased opercular beat rate, elevating the volumes of water and food material passed over the gills whereas those that were held in the toxic strain did not. Of the cyanobacterial toxins (microcystins) presented to the fish, most were in the cyanobacterial cells, toxin levels in the water being below the level of detectability (<250 ng l−1), The ability of the fish to differentiate between toxic and non-toxic cyanobacterial strains may thus be determined by very low levels of extracellular microcystins or/and other features which distinguish toxic from non-toxic M. aeruginosa strains, such as cell surface components.  相似文献   
10.
The dihydrolipoyl transacetylase component, which serves as the structural core of mammalian pyruvate dehydrogenase complexes, is acetylated when treated with either pyruvate or with acetyl-CoA in the presence of NADH. Besides the dihydrolipoyl transacetylase component, we have found that another protein, referred to as protein X, is rapidly acetylated at thiol residues. Protein X remains fully bound to the transacetylase core under conditions that remove the pyruvate dehydrogenase and dihydrolipoyl dehydrogenase components. Mapping of 125I-tryptic peptides indicated that the transacetylase subunits and protein X are structurally distinct; however, under the same mapping conditions, there is considerable similarity in the positions of acetylated peptides derived from these subunits. Affinity-purified rabbit immunoglobulin G prepared against the dihydrolipoyl transacetylase core reacted exclusively with the transacetylase and with both its tryptic-derived inner domain and outer lipolyl-bearing domain. Those results further indicate that protein X is not derived from the transacetylase subunit Affinity-purified mouse antibody to protein X reacted selectively with large tryptic polypeptides derived from protein X and did not react with the inner domain of the transacetylase. However, the anti-protein X antibody did react with the intact transacetylase subunit, the lipoyl-bearing domain of the transacetylase, and weakly with the transsuccinylase component of the alpha-ketoglutarate dehydrogenase complex. This cross-reactivity reflected specificity of a portion of the polyclonal antibodies for a related structural region in the transacetylase and protein X (possibly a similar lipoyl-bearing region). Furthermore, a major portion of that polyclonal antibody was shown to react exclusively with protein X. Thus, protein X subunits differ substantially from transacetylase subunits but the two components have a region of structural similarity. We estimate that there are about 5 mol of protein X per mol of the kidney pyruvate dehydrogenase complex. Under a variety of conditions that result in a wide range of levels of acetylation of sites in the complex, about 1 acetyl group is incorporated into protein X per 10 acetyl groups incorporated into the transacetylase subunits per mol of complex. That ratio is close to the ratio of protein X subunits of transacetylase subunits in the complex, indicating that there are efficient mechanisms for acylation and deacylation of protein X.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号