首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   3篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2012年   1篇
  2010年   1篇
  2009年   4篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2004年   4篇
  2003年   1篇
  2002年   3篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1998年   2篇
  1994年   1篇
  1992年   2篇
  1991年   3篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   3篇
  1986年   2篇
  1984年   1篇
  1983年   1篇
  1979年   2篇
  1977年   1篇
  1974年   1篇
排序方式: 共有53条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Kidneys of prostaglandin H synthase-2 (PGHS-2) null mice fail to develop normally, leading to renal insufficiency. We have found that in a mixed DBA/B6 background, the lack of a functional PGHS-2 gene causes less severe renal pathology than was reported previously for PGHS-2 null mice in a B6 genetic background. The increase in blood urea nitrogen in the DBA/B6 strain of PGHS-2 null mice was significantly lower than reported for B6 PGHS-2 null mice (200% versus 270%). Cystic changes in DBA/B6 PGHS-2 null mice were also less severe. The DBA/B6 PGHS-2 null adult mice did not die from renal failure, unlike their B6/PGHS-2 counterparts that showed excessive neonatal and adult deaths. Therefore, DBA/B6 PGHS-2 null may be highly suitable to study the functional consequences of the lack of PGHS-2 in the kidney due to their less severe pathology and greater survival.  相似文献   
6.
7.
The profound effects of transforming growth factor β1 (TGF-β1) on the immune system, cardiogenesis, in yolk sac hematopoeisis and in differentiation of endothelium have been demonstrated by detailed analyses of TGF-β1 knockout mice during embryogenesis. We have systematically examined the autocrine and paracrine roles of TGF-β1 in cell proliferation and in its ability to modulate the gene expression of selected components of extracellular matrix (ECM) using embryonic fibroblasts from TGF-β1 null mice (TGF-β1−/−). The rates of cell proliferation of embryonic fibroblasts from normal mice (TGF-β1+/+) and TGF-β1 null mice were compared by cell counting, by 3H thymidine incorporation, and by measuring the fraction of cells in the G1, S, and G2/M phases of the cell cycle by fluorescent activated cell sorting (FACS). Concurrently, the expression of pro-α1(I) collagen, fibronectin, and plasminogen activator inhibitor-1 (PAI-1) was also quantified by hybridization of total mRNA from TGF-β1+/+ and TGF-β1−/− embryonic fibroblasts. We report that TGF-β1−/− cells proliferated at about twice the rate of TGF-β1+/+ cells. Further, TGF-β1 null fibroblasts accumulated and synthesized lower constitutive levels of pro-α1(I) collagen, fibronectin, and PAI-1 mRNA. The quantitative differences in the rates of cell proliferation and ECM gene expression between TGF-β1+/+ and TGF-β1−/− cells could be eliminated by treatment of TGF-β1+/+ cells with a neutralizing antibody of TGF-β1. Thus, our results are consistent with the hypothesis that TGF-β1 acts as a negative autocrine regulator of growth and a positive autocrine regulator of ECM biosynthesis in embryonic fibroblasts. 176:67–75, 1998. Published 1998 Wiley-Liss, Inc.
  • 1 This article was prepared by a group of United States government employees and non-United States government employees, and as such is subject to 17 U.S.C. Sec. 105.
  •   相似文献   
    8.
    9.
    Interleukin-1 (IL-1) is synthesized by and released from macrophages in response to a variety of stimuli and appears to play an essential role in virtually all inflammatory conditions. In tissues of mesenchymal origin (e.g., cartilage, muscle, bone, and soft connective tissue) IL-1 induces changes characteristic of both destructive as well as reparative phenomena. Previous studies with natural IL-1 of varying degrees of purity have suggested that it is capable of modulating a number of biological activities of fibroblasts. We have compared the effects of purified human recombinant (hr) IL-1 alpha and beta on several fibroblast functions. The parameters studied include cell proliferation, chemotaxis, and production of collagen, collagenase, tissue inhibitor of metalloproteinase (TIMP), and prostaglandin (PG) E2. We observed that hrIL-1s stimulate the synthesis and accumulation of type I procollagen chains. Intracellular degradation of collagen is not altered by the hrIL-1s. Both IL-1s were observed to increase the steady-state levels of pro alpha 1(I) and pro alpha 2(I) mRNAs, indicating that they exert control of type I procollagen gene expression at the pretranslational level. We found that both hrIL-1 alpha and beta stimulate synthesis of TIMP, collagenase, PGE2, and growth of fibroblasts in vitro but are not chemotactic for fibroblasts. Although hrIl-1 alpha and beta both are able to stimulate production of PGE2 by fibroblasts, inhibition of prostaglandin synthesis by indomethacin has no measurable effect on the ability of the IL-1s to stimulate cell growth or production of collagen and collagenase. Each of the IL-1s stimulated proliferation and collagen production by fibroblasts to a similar degree, however hrIL-1 beta was found to be less potent than hrIL-1 alpha in stimulating PGE2 production. These observations support the notion that IL-1 alpha and beta may both modulate the degradation of collagen at sites of tissue injury by virtue of their ability to stimulate collagenase and PGE2 production by fibroblasts. Furthermore, IL-1 alpha and beta might also direct reparative functions of fibroblasts by stimulating their proliferation and synthesis of collagen and TIMP.  相似文献   
    10.
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号