首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1212篇
  免费   72篇
  2023年   5篇
  2022年   14篇
  2021年   15篇
  2020年   9篇
  2019年   16篇
  2018年   24篇
  2017年   8篇
  2016年   30篇
  2015年   54篇
  2014年   68篇
  2013年   94篇
  2012年   98篇
  2011年   86篇
  2010年   64篇
  2009年   48篇
  2008年   79篇
  2007年   75篇
  2006年   75篇
  2005年   73篇
  2004年   89篇
  2003年   55篇
  2002年   53篇
  2001年   15篇
  2000年   16篇
  1999年   9篇
  1998年   11篇
  1996年   5篇
  1995年   5篇
  1994年   9篇
  1993年   8篇
  1992年   7篇
  1991年   5篇
  1990年   3篇
  1989年   7篇
  1988年   7篇
  1987年   5篇
  1986年   3篇
  1985年   6篇
  1984年   7篇
  1983年   2篇
  1982年   2篇
  1981年   4篇
  1977年   2篇
  1975年   1篇
  1973年   2篇
  1970年   1篇
  1969年   1篇
  1968年   2篇
  1964年   1篇
  1963年   1篇
排序方式: 共有1284条查询结果,搜索用时 15 毫秒
1.
2.
3.
Summary By using an artificial hybrid between phage and the pR plasmid, we have shown that the rep region of the pR plasmid encodes a function which regulates the expression of the muc genes (plasmid genes that are under the negative control of lexA and responsible for an increased rate of spontaneous mutagenesis and resistance to UV and chemicals). Expression of the muc genes was monitored by a fusion between the muc promoter and the lacZ structural gene. When E. coli cells containing such a fusion are infected by the hybrid pR phasmid, -galactosidase activity is enhanced, indicating that pR encodes an antagonist of lexA. By deletion mapping we have located the gene encoding the antagonist of lexA (bat) in the rep region of the plasmid. The bat gene product can also antagonize the cI repressor as shown by the observation that pR phasmids are virulent on a homoimmune lysogen. We have exploited this latter property to carry out genetic and functional analysis of the bat region. This region is organized as a classical operon where the expression of the bat structural gene is negatively regulated by a repressor gene that encodes a proteic product.  相似文献   
4.
An NAD(P)H dehydrogenase stimulated by quinone (P Pupillo, V Valenti, L de Luca, R Hertel 1986 Plant Physiol 80: 384-389) was solubilized from washed microsomes of zucchini squash hypocotyls (Cucurbita pepo L.) by use of 1% Triton X-100. The solubilized enzyme remained in solution in aqueous buffer and could be purified by a combination of Sepharose 6B chromatography and Blue Ultrogel chromatography. Of the three peaks of activity eluted from the latter column with a salt gradient, peak 3 had 50% or more of the activity and was almost pure enzyme. The preparation examined in SDS-gel electrophoresis consisted of two types of subunits, a (molecular weight 39,500) and b (37,000) in equal amounts. Peak 2 was less pure but had a similar polypeptide pattern. The active protein is proposed to be a heterotetramer (a2b2) having a molecular weight of about 150,000, as found by gel exclusion chromatography. The purified enzyme can reduce several quinones, DCPIP, cytochrome c, and with best efficiency ferricyanide, and is therefore a diaphorase. The kinetics for the substrates are negatively cooperative with Hill coefficients nH = 0.55 ± 0.05 for NADPH and 0.22 ± 0.04 for duroquinone. A weak inhibition by p-hydroxymercuric benzoate and mersalyl (stronger with microsomal preparations) suggests the presence of essential sulfhydryl group(s). The possibility is discussed that the dehydrogenase is an NAD(P)H-P450 reductase or similar flavoprotein, and that it is responsible for the NADPH-cytochrome c reductase activity of plant microsomes.  相似文献   
5.
6.
Summary The patch-clamp technique in whole-cell configuration was used to study the electrical properties of the tonoplast in isolated vacuoles fromAcer pseudoplatanus cultured cells. In symmetrical KCl or K2 malate solutions, voltage- and time-dependent inward currents were elicited by hyperpolarizing the tonoplast (inside negative), while in the positive range of potential the conductance was very small. The specific conductance of the tonoplast at –100 mV, in 100mm symmetrical KCl was about 160 S/cm2. The reversal potentials (E rev) of the current, measured in symmetrical or asymmetrical ion concentrations (cation, anion or both) were very close to the values of the K+ equilibrium potential. Experiments performed in symmetrical or asymmetrical NaCl indicate that Na+ too can flow through the channels. NeitherE rev nor amplitude and kinetics of the current changed by replacing NaCl with KCl in the external solution. These results indicate the presence of hyperpolarization-activated channels in tonoplasts, which are permeable to K+ as well as to Na+. Anions such as Cl or malate seem to contribute little to the channel current.  相似文献   
7.
Circadian rhythms of serotonin (5HT), its precursors tryptophan (TP) and 5-hydroxy-tryptophan (5HTP) and its acid catabolite 5-hydroxy-indoleacetic acid (5HIAA), were determined in the hypothalamus of control rats and rats which had been treated continuously with subcutaneous imipramine (10 mg/kg/day) for 2 weeks.

Rats were individually housed and entrained to LD12:12. Controls showed the 5HT and TP peaks in the light and dark periods respectively, as reported in the literature, but no inverted correlation (antiphase) between SHT and 5HIAA rhythms.

Imipramine significantly modified circadian rhythm characteristics: the 5HT acrophase was advanced, that of TP and 5HIAA was delayed. Imipramine also significantly increased hypothalamic SHT and TP concentrations.  相似文献   
8.
9.
10.
Stomatal conductances of normally oriented and inverted leaves were measured as light levels (photosynthetic photon flux densities) were increased to determine whether abaxial stomata of Vicia faba leaves were more sensitive to light than adaxial stomata. Light levels were increased over uniform populations of leaves of plants grown in an environmental chamber. Adaxial stomata of inverted leaves reached maximum water vapor conductances at a light level of 60 micromoles per square meter per second, the same light level at which abaxial stomata of normally oriented leaves reached maximum conductances. Abaxial stomata of inverted leaves reached maximum conductances at a light level of 500 micromoles per square meter per second, the same light level at which adaxial stomata of normally oriented leaves reached maximum conductances. Maximum conductances in both normally oriented and inverted leaves were about 200 millimoles per square meter per second for adaxial stomata and 330 millimoles per square meter per second for abaxial stomata. Regardless of whether leaves were normally oriented or inverted, when light levels were increased to values high enough that upper leaf surfaces reached maximum conductances (about 500 micromoles per square meter per second), light levels incident on lower, shaded leaf surfaces were just sufficient (about 60 micromoles per square meter per second) for stomata of those surfaces to reach maximum conductances. This `coordinated' stomatal opening on the separate epidermes resulted in total leaf conductances for normally oriented and inverted leaves that were the same at any given light level. We conclude that stomata in abaxial epidermes of intact Vicia leaves are not more sensitive to light than those in adaxial epidermes, and that stomata in leaves of this plant do not respond to light alone. Additional factors in bulk leaf tissue probably produce coordinated stomatal opening on upper and lower leaf epidermes to optimally meet photosynthetic requirements of the whole leaf for CO2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号