首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   3篇
  2019年   3篇
  2018年   3篇
  2016年   1篇
  2015年   2篇
  2013年   3篇
  2012年   1篇
  2010年   1篇
  2008年   1篇
  2004年   3篇
  2003年   2篇
  2000年   1篇
  1999年   1篇
排序方式: 共有22条查询结果,搜索用时 15 毫秒
1.
Angiogenesis get full robustness in metastatic cancer, relapsed leukemia or lymphoma when complex positive feedback loop signaling systems become integrative. A cancer hypoxic microenvironment generates positive loops inducing formation of the vascular functional shunts. AKT is an upstream angiogenic locus of integrative robustness and fragility activated by the positive loops. AKT controls two downstream nodes the mTOR and NOS in nodal organization of the signaling genes. AKT phosphorylation is regulated by a balance of an oxidant/antioxidant. Targeting AKT locus represents new principle to control integrative angiogenic robustness by the locus chemotherapy. J. Cell. Physiol. 228: 21–24, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
2.
Endothelium of the cerebral blood microvessels, which constitutes the major component of the blood-brain barrier, controls leukocyte and metastatic cancer cell adhesion and trafficking into the brain parenchyma. In this study, using rat primary brain microvascular endothelial cells (BMEC), we demonstrate that the vascular endothelial growth factor (VEGF), a potent promoter of angiogenesis, up-regulates the expression of the intracellular adhesion molecule-1 (ICAM-1) through a novel pathway that includes phosphatidylinositol 3 OH-kinase (PI3K), AKT, and nitric oxide (NO), resulting in the migration of BMEC. Upon VEGF treatment, AKT is phosphorylated in a PI3K-dependent manner. AKT activation leads to NO production and release and activation-deficient AKT attenuates NO production stimulated by VEGF. Transfection of the constitutive myr-AKT construct significantly increased basal NO release in BMEC. In these cells, VEGF and the endothelium-derived NO synergistically up-regulated the expression of ICAM-1, which was mediated by the PI3K pathway. This activity was blocked by the PI3K-specific inhibitor, wortmannin. Furthermore, VEGF and NO significantly increased BMEC migration, which was mediated by the up-regulation of ICAM-1 expression and was dependent on the integrity of the PI3K/AKT/NO pathway. This effect was abolished by wortmannin, by the specific ICAM-1 antibody, by the specific inhibitor of NO synthase, N(G)-l-monomethyl-arginine (l-NMMA) or by a combination of wortmannin, ICAM-1 antibody, and l-NMMA. These findings demonstrate that the angiogenic factor VEGF up-regulates ICAM-1 expression and signals to ICAM-1 as an effector molecule through the PI3K/AKT/NO pathway, which leads to brain microvessel endothelial cell migration. These observations may contribute to a better understanding of BMEC angiogenesis and the physiological as well as pathophysiological function of the blood-brain barrier, whose integrity is crucial for normal brain function.  相似文献   
3.
A cancer microenvironment generates strong hydrogen bond network system by the positive feedback loops supporting cancer complexity and robustness. Such network functions through the AKT locus generating high entropic energy supporting cancer metastatic robustness. Charged lepton particle muon follows the rule of Bragg effect during a collision with hydrogen network in cancer cells. Muon beam dismantles hydrogen bond network in cancer by the muon-catalyzed fusion, leading to apoptosis of cancer cells. Muon induces cumulative energy appearance on the hydrogen bond network in a cancer cell with its fast decay to an electron and two neutrinos. Thus, muon beam, muonic atom, muon neutrino shower, and electrons simultaneously cause fast neutralization of the AKT hydrogen bond network by the conversion of hydrogen into deuterium or helium, inactivating the hydrogen bond networks and inducing failure of cancer complexity and robustness with the disappearance of a malignant phenotype.  相似文献   
4.
5.
Hyperactivated lysosome causes cancer and induces metastasis or cancer relapse. Such activation occurs during excessive, intense, and protracted oxidative burst in the lysosome. The burst induces the formation of the constitutively active (permanently active) AKT locus generating cancer complexity and robustness. Such condition has the tendency to persist by stabilized intense signaling inducing upregulation of cell function and metabolic setup at the higher level. Most intense activator of the lysosome is the fungus Aspergillus fumigatus, which activates the AKT, a critical element in lysosome control, inducing cancer development, metastatic progression, or cancer relapse. Targeting the AKT active site of hydrogen network, by redox balance change or hydrogen balance change or muon-catalyzed fusion or laser-induced fusion with anti- A. fumigatus medication converts active AKT locus into inactive element, inducing disappearance of malignant phenotype.  相似文献   
6.
Complexity and robustness of cancer hypoxic microenvironment are supported by the robust signaling networks of autocrine and paracrine elements creating powerful interactome for multidrug resistance. These elements generate a positive feedback loops responsible for the extreme robustness and multidrug resistance in solid cancer, leukemia, myeloma, and lymphoma. Phosphorylated AKT is a cancer multidrug resistance locus. Targeting that locus by oxidant/antioxidant balance modulation, positive feedback loops are converted into negative feedback loops, leading to disappearance of multidrug resistance. This is a new principle for targeting cancer multidrug resistance by the locus chemotherapy inducing a phenomenon of loops conversion. J. Cell. Physiol. 228: 671–674, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
7.
Hydrogen peroxide (H2O2) activates signaling cascades essential for cell proliferation via phosphatidylinositol-3-kinase (PI3K) and Akt. Here we show that induction of mitogenic signaling by H2O2 activates sequentially PI3K, Akt, mammalian target of rapamycin (mTOR), and Ran protein. Akt activation is followed by signaling through the mTOR kinase and upregulation of Ran in primary type II pneumocytes, a cell type implicated in the development of lung adenocarcinoma. Pretreatment of the cells with wortmannin, a specific inhibitor of PI3K, or rapamycin, a specific inhibitor of mTOR kinase, prevented H2O2-increased mitosis. H2O2-induced Akt ser-473 phosphorylation and upregulation of Ran protein were prevented by wortmannin but not by rapamycin, indicating that PI3K is upstream of Akt and mTOR is downstream from Akt. Overexpression of myr-Akt or Ran-wt in type II pneumocytes increased Akt ser-473 phosphorylation and mitosis in a catalase-dependent manner, indicating that H2O2 is essential for Akt and Ran signaling. These results indicate that H2O2-induced mitogenic signaling in primary type II pneumocytes is mediated by PI3K, Akt, mTOR-kinase, and Ran protein.  相似文献   
8.
Locus of fragility in robust breast cancer system   总被引:1,自引:0,他引:1  
Functional heterogeneous redundancy of breast cancer makes this tumor to be robust. Signaling mechanisms which control cancer responses are crucial for controlling robustness. Identification of locus of fragility in cancer represents basic mechanism to target robustness. The goal of this prospect is to present locus of fragility in breast cancer robust system, and how disruption of this locus induces failure of robustness. My recent research show, that locus of fragility in breast cancer cells is suppression of nitric oxide (NO). When it was targeted, dynamics of cancer to generate robustness failed that it blocked cancer cell proliferation dependent on the NO/Rb pathway, blocked cell migration and angiogenesis dependent on the VEGF/PI3K/AKT/NO/ICAM-1 pathway, and induced breast cancer cell apoptosis through the NO/ROCK/FOXO3a signaling pathway. This tiny and trivial perturbation in breast cancer cells such as suppression of NO represents locus of fragility (weakness) and new approach for breast cancer chemotherapy.  相似文献   
9.
Generation and maintenance of a cancer complexity and robustness are impossible without hydrogen element. It is essential element for the cancer signaling through the AKT locus. Hyperactivated AKT locus by a positive feedback loops from the cancer hypoxic microenvironment generates a hydrogen bond network. Such network initiates protein–protein interaction at the AKT active site and at the same time stabilizes signal propagation. A hydrogen bond network conforms an entropy/enthalpy energetic process used for the interconversion of the AKT protein in metastasis formation and maintenance. Targeting the AKT locus by the redox balance change or hydrogen balance change or proton beam radiation disrupts a hydrogen bond network leading to the disappearance of a cancer complexity and robustness causing failure of the complex energy system in solid cancers and hematological malignancy. J. Cell. Biochem. 119: 130–133, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   
10.
The gut microbiota affects many aspects of human health, and research, especially over the past decade, is demonstrating that the brain is no exception. This review summarizes existing human observational studies of the microbiota in brain health and neurological conditions at all ages, as well as animal studies that are advancing the field beyond correlation and into causality. Potential mechanisms by which the brain and the gut microbiota are connected are explored, including inflammation, bacterially-produced metabolites and neurotransmitters and specific roles for individual microbes. Finally, important challenges and potential mitigation strategies are discussed, as well as ways in which some of these same challenges can be harnessed to advance our understanding of this complex, exciting and rapidly evolving field.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号