首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   2篇
  2018年   1篇
  2017年   1篇
  2015年   3篇
  2014年   1篇
  2013年   3篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  1999年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有21条查询结果,搜索用时 31 毫秒
1.
In the present investigation, growth of the organisms was reduced due to presence of arsenic (III) and (V) in the culture medium. In comparison to arsenic (V), arsenic (III) had more toxic effect on microalgae. Among the different algal strains, blue green algal species Oscillatoria-Lyngbya mixed culture showed maximum efficiency in removing arsenic (64%) after 21 days of incubation and the same algal species could remove arsenic (III), but 60% after 21 days when incubated in 0.1 mg/l arsenic (III) containing medium. Maximum removal was observed at their exponential growth phase and also so sometime extended to the stationary phase.  相似文献   
2.
To initiate mitochondrial fission, dynamin-related proteins (DRPs) must bind specific adaptors on the outer mitochondrial membrane. The structural features underlying this interaction are poorly understood. Using yeast as a model, we show that the Insert B domain of the Dnm1 guanosine triphosphatase (a DRP) contains a novel motif required for association with the mitochondrial adaptor Mdv1. Mutation of this conserved motif specifically disrupted Dnm1–Mdv1 interactions, blocking Dnm1 recruitment and mitochondrial fission. Suppressor mutations in Mdv1 that restored Dnm1–Mdv1 interactions and fission identified potential protein-binding interfaces on the Mdv1 β-propeller domain. These results define the first known function for Insert B in DRP–adaptor interactions. Based on the variability of Insert B sequences and adaptor proteins, we propose that Insert B domains and mitochondrial adaptors have coevolved to meet the unique requirements for mitochondrial fission of different organisms.  相似文献   
3.
4.
Interactions between yeast Dnm1p, Mdv1p, and Fis1p are required to form fission complexes that catalyze division of the mitochondrial compartment. During the formation of mitochondrial fission complexes, the Dnm1p GTPase self-assembles into large multimeric complexes on the outer mitochondrial membrane that are visualized as punctate structures by fluorescent labeling. Although it is clear that Fis1p.Mdv1p complexes on mitochondria are required for the initial recruitment of Dnm1p, it is not clear whether Dnm1p puncta assemble before or after this recruitment step. Here we show that the minimum oligomeric form of cytoplasmic Dnm1p is a dimer. The middle domain mutant protein Dnm1G385Dp forms dimers in vivo but fails to assemble into punctate structures. However, this dimeric mutant stably interacts with Mdv1p on the outer mitochondrial membrane, demonstrating that assembly of stable Dnm1p multimers is not required for Dnm1p-Mdv1p association or for mitochondrial recruitment of Dnm1p. Dnm1G385Dp is reported to be a terminal dimer in vitro. We describe conditions that allow assembly of Dnm1G385Dp into functional fission complexes on mitochondria in vivo. Using these conditions, we demonstrate that multimerization of Dnm1p is required to promote reorganization of Mdv1p from a uniform mitochondrial localization into punctate fission complexes. Our studies also reveal that Fis1p is present in these assembled fission complexes. Based on our results, we propose that Dnm1p dimers are initially recruited to the membrane via interaction with Mdv1p.Fis1p complexes. These dimers then assemble into multimers that subsequently promote the reorganization of Mdv1p into punctate fission complexes.  相似文献   
5.
6.
The effect of nano-Ag (n-Ag) plasmonic layer in InP/CdS solar cell structure was examined. An enhancement of short circuit current improving the overall cell efficiency was observed in InP/n-Ag/CdS cells. Location of the plasmonic layer in the above cell structure has been analyzed critically. The effect of introducing plasmonic layer on the overall performance of the cell has been studied in terms of the morphology, particle size distribution, optical absorption, I–V, C–V characteristics, and lifetime of the photo-generated carriers. Secondary ion mass spectroscopy (SIMS) studies were carried out for investigating possible interface alloying.  相似文献   
7.
One neutral [Cu2(enbzpy)(dca)4]n (1) and one polycationic [Ni(enbzpy)(dca)]n(ClO4)n (2) [enbzpy = N,N′-(bis-(pyridin-2-yl)benzylidene)ethane-1,2-diamine; dca = dicyanamide] 1D coordination polymers are synthesized and characterized. X-ray structural analyses reveal each copper(II) center in 1 to adopt a distorted square pyramidal geometry with a CuN5 chromophore coordinated through two N atoms of the Schiff base behaving as a binucleting bis(bidentate) ligand and three nitrile N atoms of one terminal and two single μ1,5 dca units leading to a 1D ladder structure. In 2, each nickel(II) center has a distorted octahedral coordination environment with an NiN6 chromophore bound by four N atoms of enbzpy through tetradentate chelation and two nitrile N atoms of two different single bridged μ1,5 dca units; the latter connects other neighboring metal centers in a non-ending fashion affording a 1D chain. Variable-temperature magnetic susceptibility measurements of 1 and 2 show weak antiferromagnetic interactions among the metal centers through μ1,5 dca bridges.  相似文献   
8.
Phosphatidylinositol 4 phosphate 5 kinase 1α (PIP5K) is mainly localized in the cytosol and plasma membrane. Studies have also indicated its prominent association with nuclear speckles. The exact nature of this nuclear pool of PIP5K is not clear. Using biochemical and microscopic techniques, we have demonstrated that the nuclear pool of PIP5K is modified by SUMO-1 in HEK-293 cells stably expressing PIP5K. Moreover, this SUMOylated pool of PIP5K increased during apoptosis. PolySUMO-2 chain conjugated PIP5K was detected by pull-down experiment using affinity-tagged RNF4, a polySUMO-2 binding protein, during late apoptosis.  相似文献   
9.
Two hexacoordinated dinuclear compounds [Mn(L1)(dca)]2(ClO4/PF6)2·CH3OH (1/2) and two heptacoordinated coordination polymers [Mn(L2)(dca)]n(ClO4/PF6)n (3/4) [L1 = N,N′-(bis-(pyridin-2-yl)benzylidene)-1,3-propanediamine; L2 = N,N′-(bis-(pyridin-2-yl)benzylidene)diethylenetriamine; dca = dicyanamide] are synthesized and characterized. Structures of 1-3 have been solved by X-ray diffraction measurements. Each manganese(II) center in 1/2 is located in a distorted octahedral environment with an MnN6 chromophore coordinated by the four N atoms of L1 and two nitrile N atoms of bibridged μ1,5 dca. Interestingly, the coordination polymer 3 forms a 1D chain through single Mn-(NCNCN)-Mn units in which each manganese(II) center adopts a pentagonal bipyramidal geometry with an MnN7 chromophore occupied with five N atoms of L2 and two nitrile N atoms of monobridged μ1,5 dca. Magnetic susceptibility measurements of 1-3 in the 2-300 K temperature range reveal weak antiferromagnetic interactions.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号