首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   162篇
  免费   9篇
  国内免费   1篇
  2023年   2篇
  2022年   2篇
  2021年   5篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   5篇
  2016年   3篇
  2015年   4篇
  2014年   10篇
  2013年   6篇
  2012年   23篇
  2011年   19篇
  2010年   14篇
  2009年   13篇
  2008年   5篇
  2007年   10篇
  2006年   11篇
  2005年   11篇
  2004年   5篇
  2003年   9篇
  2002年   5篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1990年   2篇
排序方式: 共有172条查询结果,搜索用时 15 毫秒
1.
Blood serum is arguably the most analyzed biofluid for disease prediction and diagnosis. Herein, we benchmarked five different serum abundant protein depletion (SAPD) kits with regard to the identification of disease-specific biomarkers in human serum using bottom-up proteomics. As expected, the IgG removal efficiency among the SAPD kits is highly variable, ranging from 70% to 93%. A pairwise comparison of database search results showed a 10%–19% variation in protein identification among the kits. Immunocapturing-based SAPD kits against IgG and albumin outperformed the others in the removal of these two abundant proteins. Conversely, non-antibody-based methods (i.e., kits using ion exchange resins) and kits leveraging a multi-antibody approach were proven to be less efficient in depleting IgG/albumin from samples but led to the highest number of identified peptides. Notably, our results indicate that different cancer biomarkers could be enriched up to 10% depending on the utilized SAPD kit compared with the undepleted sample. Additionally, functional analysis of the bottom-up proteomic results revealed that different SAPD kits enrich distinct disease- and pathway-specific protein sets. Overall, our study emphasizes that a careful selection of the appropriate commercial SAPD kit is crucial for the analysis of disease biomarkers in serum by shotgun proteomics.  相似文献   
2.
The X-linked gene Rnf12 encodes the ubiquitin ligase really interesting new gene (RING) finger LIM domain–interacting protein (RLIM)/RING finger protein 12 (Rnf12), which serves as a major sex-specific epigenetic regulator of female mouse nurturing tissues. Early during embryogenesis, RLIM/Rnf12 expressed from the maternal allele is crucial for the development of extraembryonic trophoblast cells. In contrast, in mammary glands of pregnant and lactating adult females RLIM/Rnf12 expressed from the paternal allele functions as a critical survival factor for milk-producing alveolar cells. Although RLIM/Rnf12 is detected mostly in the nucleus, little is known about how and in which cellular compartment(s) RLIM/Rnf12 mediates its biological functions. Here we demonstrate that RLIM/Rnf12 protein shuttles between nucleus and cytoplasm and this is regulated by phosphorylation of serine S214 located within its nuclear localization sequence. We show that shuttling is important for RLIM to exert its biological functions, as alveolar cell survival activity is inhibited in cells expressing shuttling-deficient nuclear or cytoplasmic RLIM/Rnf12. Thus regulated nucleocytoplasmic shuttling of RLIM/Rnf12 coordinates cellular compartments during mammary alveolar cell survival.  相似文献   
3.
4.
Previously, we reported the discovery of macrocyclic peptide triazoles (cPTs) that bind to HIV‐1 Env gp120, inhibit virus cell infection with nanomolar potencies, and cause irreversible virion inactivation. Given the appealing virus‐killing activity of cPTs and resistance to protease cleavage observed in vitro, we here investigated in vivo pharmacokinetics of the cPT AAR029b. AAR029b was investigated both alone and encapsulated in a PEGylated liposome formulation that was designed to slowly release inhibitor. Pharmacokinetic analysis in rats showed that the half‐life of FITC‐AAR029b was substantial both alone and liposome‐encapsulated, 2.92 and 8.87 hours, respectively. Importantly, liposome‐encapsulated FITC‐AAR029b exhibited a 15‐fold reduced clearance rate from serum compared with the free FITC‐cPT. This work thus demonstrated both the in vivo stability of cPT alone and the extent of pharmacokinetic enhancement via liposome encapsulation. The results obtained open the way to further develop cPTs as long‐acting HIV‐1 inactivators against HIV‐1 infection.  相似文献   
5.
The lens protein, alpha-crystallin, is a molecular chaperone that prevents the thermal aggregation of other proteins. The C-terminal domain of this protein (homologous to domains present in small heat-shock proteins) is implicated in chaperone function, although the domain itself has been reported to show no chaperone activity. Here, we show that the domain can be excised out of the intact alphaB polypeptide and recovered directly in pure form through the transfer of CNBr digests of whole lens homogenates into urea-containing buffer, followed by dialysis-based refolding of digests under acidic conditions and a single gel-filtration purification step. The folded (beta sheet) domain thus obtained is found to be (a) predominantly trimeric, and to display (b) significant surface hydrophobicity, (c) a marked tendency to undergo degradation, and (d) a tendency to aggregate upon heating, and on exposure to UV light. Thus, the twin 'chaperone' features of multimericity and surface hydrophobicity are clearly seen to be insufficient for this domain to function as a chaperone. Since alpha-crystallin interacts with its substrates through hydrophobic interactions, the hydrophobicity of the excised domain indicates that separation of domains may regulate function; at the same time, the fact is also highlighted that surface hydrophobicity is a liability in a chaperone since heating strengthens hydrophobic interactions and can potentially promote self-aggregation. Thus, it would appear that the role of the N-terminal domain in alpha-crystallin is to facilitate the creation of a porous, hollow structural framework of >/=24 subunits in which solubility is effected through increase in the ratio of exposed surface area to buried volume. Trimers of interacting C-terminal domains anchored to this superstructure, and positioned within its interior, might allow hydrophobic surfaces to remain accessible to substrates without compromising solubility.  相似文献   
6.
Mouse peritoneal macrophages (MPM) when elicited by the antioxidant ascorbic acid have been found to be significantly stimulatory, exhibiting marked alteration at the cellular and enzyme levels. Alterations recorded were as follows--cellular yield per mouse, their protein content, lysosomal acid hydrolase levels and capability to phagocyte, all were significantly enhanced. The new stimulant was observed to produce no synergistic action on MPM when thioglycollate, BCG or endotoxin along with the same stimulated the latter. Levels of antioxidants like ascorbic acid and glutathione were found to be enhanced in elicited macrophages whereas superoxide dismutase levels varied when the three above stimulators were administered. However, the ascorbic acid elicited cells showed an increase in glutathione levels and a decrease in SOD levels but no change in total intracellular ascorbic acid levels. Further, though ascorbic acid interaction enhanced the phagocytic capability of MPM as compared to resident cells, no significant boosting of phagocytic process could be observed when each of three stimulators coupled with ascorbic acid was used for macrophage elicitation.  相似文献   
7.
Unicellular cyanobacteria Synechocystis 6803 were fixed using high-pressure freezing (HPF) and freeze substitution without any chemical cross-linkers. Immunoelectron microscopy of these cells showed that five sequential enzymes of the Calvin cycle (phosphoriboisomerase, phosphoribulokinase, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), 3-phosphoglyceratekinase and glyceraldehyde-3-phosphate dehydrogenase) and the catalytic portion of the chloroplast H^+-ATP synthase (CF1) are located adjacent to the thylakoid membranes. Cell-free extracts of Synechocystis were processed by ultracentrifugation to isolate thylakoid fractions sedimenting at 40 000, 90 000, and 150 000 g. Among these, the 150 000-g fraction showed the highest linked activity of the above five sequential Calvin cycle enzymes and also the highest coordinated activity of light and dark reactions as assessed by ribose-5-phosphate (R-5-P) +ADP dependent CO2 fixation. Immunogold labeling of this membrane fraction confirmed the presence of the above five enzymes as well as the catalytic portion of the CF1 ATP synthase. Notably, the protein A-gold labeling of the thylakoids was observed without use of chemical cross-linkers and in spite of the normal washing steps used during standard immunolabeling. The results showed that soluble Calvin cycle enzymes might be organized along the thylakoid membranes.  相似文献   
8.
9.
The importance of the Cdk4 protein in human cancer became evident following the identification of a germ line mutation in the Cdk4 locus that predisposes humans to melanoma. This mutation results in substitution of argininefirst with cysteine at position 24 (R24C). In an earlier study, we introduced the R24C mutation into the Cdk4 locus of mice using Cre-loxp-mediated “knock-in” technology and observed a very low incidence of spontaneous melanomas in Cdk4R24C/R24C mice. This suggested that additional oncogenic mutations might be required for development of melanomas. Here we report an increased incidence of spontaneous cutaneous melanoma in mice expressing the oncogene HRAS(G12V) in melanocytes on a Cdk4R24C background. Treatment of Tyr-HRas:Cdk4R24C/R24C mice with the carcinogen, DMBA/TPA resulted in a further increase in the number of nevi and melanomas developed when compared with Tyr-HRas:Cdk4+/+ mice. In summary, in Tyr-HRas:Cdk4R24C/R24C mice, we observed that activated Cdk4 cooperates with the oncogenic HRAS(G12V) protein to increase the susceptibility of melanoma development in vivo.Key words: Cdk4R24C, ras, melanoma, skin, carcinogen  相似文献   
10.
Binding of the human immunodeficiency virus (HIV-1) envelope glycoprotein gp120 to the CCR5 co-receptor reduces constraints on the metastable transmembrane subunit gp41, thereby enabling gp41 refolding, fusion of viral and cellular membranes, and infection. We previously isolated adapted HIV-1JRCSF variants that more efficiently use mutant CCR5s, including CCR5(Δ18) lacking the important tyrosine sulfate-containing amino terminus. Effects of mutant CCR5 concentrations on HIV-1 infectivities were highly cooperative, implying that several may be required. However, because wild-type CCR5 efficiently mediates infections at trace concentrations that were difficult to measure accurately, analyses of its cooperativity were not feasible. New HIV-1JRCSF variants efficiently use CCR5(HHMH), a chimera containing murine extracellular loop 2. The adapted virus induces large syncytia in cells containing either wild-type or mutant CCR5s and has multiple gp120 mutations that occurred independently in CCR5(Δ18)-adapted virus. Accordingly, these variants interchangeably use CCR5(HHMH) or CCR5(Δ18). Additional analyses strongly support a novel energetic model for allosteric proteins, implying that the adaptive mutations reduce quaternary constraints holding gp41, thus lowering the activation energy barrier for membrane fusion without affecting bonds to specific CCR5 sites. In accordance with this mechanism, highly adapted HIV-1s require only one associated CCR5(HHMH), whereas poorly adapted viruses require several. However, because they are allosteric ensembles, complexes with additional co-receptors fuse more rapidly and efficiently than minimal ones. Similarly, wild-type HIV-1JRCSF is highly adapted to wild-type CCR5 and minimally requires one. The adaptive mutations cause resistances to diverse entry inhibitors and cluster appropriately in the gp120 trimer interface overlying gp41. We conclude that membrane fusion complexes are allosteric machines with an ensemble of compositions, and that HIV-1 adapts to entry limitations by gp120 mutations that reduce its allosteric hold on gp41. These results provide an important foundation for understanding the mechanisms that control membrane fusion and HIV-1's facile adaptability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号