首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   124篇
  免费   42篇
  2020年   2篇
  2016年   3篇
  2015年   6篇
  2014年   2篇
  2013年   6篇
  2012年   8篇
  2011年   5篇
  2010年   6篇
  2009年   4篇
  2008年   3篇
  2007年   7篇
  2006年   3篇
  2005年   7篇
  2004年   5篇
  2003年   4篇
  2002年   7篇
  2001年   2篇
  2000年   2篇
  1999年   6篇
  1997年   2篇
  1994年   3篇
  1991年   3篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1987年   3篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1980年   2篇
  1978年   3篇
  1975年   3篇
  1974年   3篇
  1972年   2篇
  1970年   2篇
  1968年   4篇
  1965年   2篇
  1959年   1篇
  1957年   2篇
  1953年   2篇
  1951年   1篇
  1950年   1篇
  1949年   1篇
  1945年   1篇
  1944年   2篇
  1943年   1篇
  1942年   1篇
  1940年   1篇
  1932年   1篇
排序方式: 共有166条查询结果,搜索用时 256 毫秒
1.
Strand-specific hybridization probes were utilized in in situ molecular hybridization specifically to localize replicative form DNA of Aleutian mink disease parvovirus (ADV). Throughout in vitro infection, duplex replicative form DNA of ADV was located in the cell nuclei. Single-stranded virion DNA and capsid proteins were present in the nuclei early in infection, but were later translocated to the cytoplasm. In neonatal mink, ADV causes acute interstitial pneumonia, and replicative forms of viral DNA were found predominantly in alveolar type II cells of the lung. Viral DNA was also found in other organs, but strand-specific probes made it possible to show that most of this DNA represented virus sequestration. In addition, glomerular immune complexes containing intact virions were detected, suggesting that ADV virions may have a role in the genesis of ADV-induced glomerulonephritis.  相似文献   
2.
B Caughey  G J Raymond  D Ernst    R E Race 《Journal of virology》1991,65(12):6597-6603
Scrapie and related transmissible spongiform encephalopathies result in the accumulation of a protease-resistant form of an endogenous brain protein called PrP. As an approach to understanding the scrapie-associated modification of PrP, we have studied the processing and sedimentation properties of protease-resistant PrP (PrP-res) in scrapie-infected mouse neuroblastoma cells. Like brain-derived PrP-res, the neuroblastoma cell PrP-res aggregated in detergent lysates, providing evidence that the tendency to aggregate is an intrinsic property of PrP-res and not merely a secondary consequence of degenerative brain pathology. The PrP-res species had lower apparent molecular masses than the normal, protease-sensitive PrP species and were not affected by moderate treatments with proteinase K. This suggested that the PrP-res species were partially proteolyzed by the neuroblastoma cells. Immunoblot analysis of PrP-res with a panel of monospecific anti-PrP peptide sera confirmed that the PrP-res species were quantitatively truncated at the N terminus. The metabolic labeling of PrP-res in serum-free medium did not prevent the proteolysis of PrP-res, showing that the protease(s) involved was cellular rather than serum-derived. The PrP-res truncation was inhibited in intact cells by leupeptin and NH4Cl. This provided evidence that a lysosomal protease(s) was involved, and therefore, that PrP-res was translocated to lysosomes. When considered with other studies, these results imply that the conversion of PrP to the protease-resistant state occurs in the plasma membrane or along an endocytic pathway before PrP-res is exposed to endosomal and lysosomal proteases.  相似文献   
3.
With the rationale that the neuropathological similarities between scrapie and Alzheimer's disease reflect convergent pathological mechanisms involving altered gene expression, we set out to identify molecular events involved in both processes, using scrapie as a model to study the time course of these changes. We differentially screened a cDNA library constructed from scrapie-infected mice to identify mRNAs that increase or decrease during disease and discovered in this way two mRNAs that are increased in scrapie and Alzheimer's disease. These mRNAs were subsequently shown by sequence analysis to encode apolipoprotein E and cathepsin D (EC 3.4.23.5). Using in situ hybridization and immunocytochemistry to define the cellular and anatomic pathology of altered gene expression, we found that in both diseases the increase in apolipoprotein E and cathepsin D mRNAs and proteins occurred in activated astrocytes. In scrapie, the increase in gene expression occurred soon after the amyloid-forming abnormal isoform of the prion protein has been shown to accumulate in astrocytes. In Alzheimer's disease, the increased expression of cathepsin D also occurred in association with beta-amyloid. These studies reveal some of the molecular antecedents of neuropathological changes in scrapie and Alzheimer's disease and accord new prominence to the role of astrocytes in neurodegenerative conditions.  相似文献   
4.
D Harrich  C Hsu  E Race    R B Gaynor 《Journal of virology》1994,68(9):5899-5910
The human immunodeficiency virus type 1 (HIV-1) TAR element is critical for the activation of gene expression by the transactivator protein, Tat. Mutagenesis has demonstrated that a stable stem-loop RNA structure containing both loop and bulge structures transcribed from TAR is the major target for tat activation. Though transient assays have defined elements critical for TAR function, no studies have yet determined the role of TAR in viral replication because of the inability to generate viral stocks containing mutations in TAR. In the current study, we developed a strategy which enabled us to generate stable 293 cell lines which were capable of producing high titers of different viruses containing TAR mutations. Viruses generated from these cell lines were used to infect both T-lymphocyte cell lines and peripheral blood mononuclear cells. Viruses containing TAR mutations in either the upper stem, the bulge, or the loop exhibited dramatically decreased HIV-1 gene expression and replication in all cell lines tested. However, we were able to isolate lymphoid cell lines which stably expressed gene products from each of these TAR mutant viruses. Though the amounts of virus in these cell lines were roughly equivalent, cells containing TAR mutant viruses were extremely defective for gene expression compared with cell lines containing wild-type virus. The magnitude of this decrease in viral gene expression was much greater than previously seen in transient expression assays using HIV-1 long terminal repeat chloramphenicol acetyltransferase gene constructs. In contrast to the defects in viral growth found in T-lymphocyte cell lines, several of the viruses containing TAR mutations were much less defective for gene expression and replication in activated peripheral blood mononuclear cells. These results indicate that maintenance of the TAR element is critical for viral gene expression and replication in all cell lines tested, though the cell type which is infected is also a major determinant of the replication properties of TAR mutant viruses.  相似文献   
5.
Mutations within a host cellular protein, PrP, have been associated with disease in the transmissible spongiform encephalopathies. Murine neuroblastoma cells persistently infected with mouse scrapie accumulate protease-resistant PrP (PrP-res), the abnormal form of PrP associated with disease in the transmissible spongiform encephalopathies. These cells provide a controlled system in which to study the molecular interactions which are important in the formation of PrP-res. We have expressed recombinant PrP molecules in mouse scrapie-infected murine neuroblastoma cells and assayed the effect of these heterologous PrP genes on the formation and accumulation of PrP-res. The results demonstrate that expression of heterologous PrP molecules which differ from the endogenous PrP by as little as one amino acid can profoundly interfere with the overall accumulation of PrP-res. The data suggest that precise interactions between homologous PrP molecules are important in PrP-res accumulation and that heterologous PrP molecules can block these interactions.  相似文献   
6.
Characterization of Aleutian disease virus as a parvovirus.   总被引:32,自引:26,他引:6       下载免费PDF全文
We characterized a strain of Aleutian disease virus adapted to growth in Crandall feline kidney cells at 31.8 degrees C. When purified from infected cells, Aleutian disease virus had a density in CsCl of 1.42 to 1.44 g/ml and was 24 to 26 nm in diameter. [3H]thymidine could be incorporated into the viral genome, and the viral DNA was then studied. In alkaline sucrose gradients, Aleutian disease virus DNA was a single species that cosedimented at 15.5S with single-stranded DNA from adeno-associated virus. When the DNA was analyzed on neutral sucrose gradients, a single species was again observed, which sedimented at 21S and was clearly distinct from 16S duplex adeno-associated virus DNA. A similar result was obtained even after incubation under annealing conditions, implying that the bulk of Aleutian disease virus virions contained a single non-complementary strand with a molecular weight of about 1.4 X 10(6). In addition, two major virus-associated polypeptides with molecular weights of 89,100 and 77,600 were demonstrated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of virus purified from infected cultures labeled with [35S]methionine. These data suggest that Aleutian disease virus is a nondefective parvovirus.  相似文献   
7.
Sedimentation profiles of the scrapie agent in extracts of murine spleen and brain were determined by analytical differential centrifugation. Infectivity profiles of the agent from the two tissues were similar. Sedimentation of the agent was not substantially altered by detergent treatment with sodium deoxycholate. In the presence of detergent, centrifugation at an omega2t value of 3.0 x 1010 rad2/s in a fixed-angle rotor sedimented 90% of the agent. Comparative studies with radioisotopically labeled Simian virus 40 showed that centrifugation at an omega2t value of 1.6 x 10(10) rad2/s removed 90% of the virions. The sedimentation profile of the scrapie agent was similar to that observed for cellular ribosomal RNA. Heating infectious extracts of spleen to 80 degrees C for 30 min resulted in the destruction of 95% of the RNA while sedimentation of the scrapie agent was unchanged. These studies establish a limited range of particle sizes for the scrapie agent.  相似文献   
8.
9.

Background

Sorghum is a tropical C4 cereal that recently adapted to temperate latitudes and mechanized grain harvest through selection for dwarfism and photoperiod-insensitivity. Quantitative trait loci for these traits have been introgressed from a dwarf temperate donor into hundreds of diverse sorghum landraces to yield the Sorghum Conversion lines. Here, we report the first comprehensive genomic analysis of the molecular changes underlying this adaptation.

Results

We apply genotyping-by-sequencing to 1,160 Sorghum Conversion lines and their exotic progenitors, and map donor introgressions in each Sorghum Conversion line. Many Sorghum Conversion lines carry unexpected haplotypes not found in either presumed parent. Genome-wide mapping of introgression frequencies reveals three genomic regions necessary for temperate adaptation across all Sorghum Conversion lines, containing the Dw1, Dw2, and Dw3 loci on chromosomes 9, 6, and 7 respectively. Association mapping of plant height and flowering time in Sorghum Conversion lines detects significant associations in the Dw1 but not the Dw2 or Dw3 regions. Subpopulation-specific introgression mapping suggests that chromosome 6 contains at least four loci required for temperate adaptation in different sorghum genetic backgrounds. The Dw1 region fractionates into separate quantitative trait loci for plant height and flowering time.

Conclusions

Generating Sorghum Conversion lines has been accompanied by substantial unintended gene flow. Sorghum adaptation to temperate-zone grain production involves a small number of genomic regions, each containing multiple linked loci for plant height and flowering time. Further characterization of these loci will accelerate the adaptation of sorghum and related grasses to new production systems for food and fuel.  相似文献   
10.
In the past decade, the identification of most genes involved in Congenital Disorders of Glycosylation (CDG) (type I) was achieved by a combination of biochemical, cell biological and glycobiological investigations. This has been truly successful for CDG-I, because the candidate genes could be selected on the basis of the homology of the synthetic pathway of the dolichol linked oligosaccharide in human and yeast. On the contrary, only a few CDG-II defects were elucidated, be it that some of the discoveries represent wonderful breakthroughs, like e.g, the identification of the COG defects. In general, many rare genetic defects have been identified by positional cloning. However, only a few types of CDG have effectively been elucidated by linkage analysis and so-called reverse genetics. The reason is that the families were relatively small and could—except for CDG-PMM2—not be pooled for analysis. Hence, a large number of CDG cases has long remained unsolved because the search for the culprit gene was very laborious, due to the heterogeneous phenotype and the myriad of candidate defects. This has changed when homozygosity mapping came of age, because it could be applied to small (consanguineous) families. Many novel CDG genes have been discovered in this way. But the best has yet to come: what we are currently witnessing, is an explosion of novel CDG defects, thanks to exome sequencing: seven novel types were published over a period of only two years. It is expected that exome sequencing will soon become a diagnostic tool, that will continuously uncover new facets of this fascinating group of diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号