首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67篇
  免费   10篇
  2023年   1篇
  2022年   2篇
  2021年   4篇
  2020年   1篇
  2018年   2篇
  2017年   2篇
  2016年   4篇
  2014年   4篇
  2013年   2篇
  2012年   6篇
  2011年   2篇
  2009年   6篇
  2008年   3篇
  2007年   2篇
  2006年   2篇
  2005年   7篇
  2004年   2篇
  2003年   3篇
  2002年   4篇
  2001年   2篇
  2000年   3篇
  1999年   4篇
  1998年   2篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
排序方式: 共有77条查询结果,搜索用时 229 毫秒
1.
Anaerobic degradation of alkylbenzenes with side chains longer than that of toluene was studied in freshwater mud samples in the presence of nitrate. Two new denitrifying strains, EbN1 and PbN1, were isolated on ethylbenzene and n-propylbenzene, respectively. For comparison, two further denitrifying strains, ToN1 and mXyN1, were isolated from the same mud with toluene and m-xylene, respectively. Sequencing of 16SrDNA revealed a close relationship of the new isolates to Thauera selenatis. The strains exhibited different specific capacities for degradation of alkylbenzenes. In addition to ethylbenzene, strain EbN1 utilized toluence, but not propylbenzene. In contrast, propylbenzene-degrading strain PbN1 did not grow on toluene, but was able to utilize ethylbenzene. Strain ToN1 used toluene as the only hydrocarbon substrate, whereas strain mXyN1 utilized both toluene and m-xylene. Measurement of the degradation balance demonstrated complete oxidation of ethylbenzene to CO2 by strain EbN1. Further characteristic substrates of strains EbN1 and PbN1 were 1-phenylethanol and acetophenone. In contrast to the other isolates, strain mXyN1 did not grow on benzyl alcohol. Benzyl alcohol (also m-methylbenzyl alcohol) was even a specific inhibitor of toluene and m-xylene utilization by strain mXyN1. None of the strains was able to grow on any of the alkylbenzenes with oxygen as electron acceptor. However, polar aromatic compounds such as benzoate were utilized under both oxic and anoxic conditions. All four isolates grew anaerobically on crude oil. Gas chromatographic analysis of crude oil after growth of strain ToN1 revealed specific depletion of toluene.  相似文献   
2.
3.
Invasive alien species are a major threat to ecosystems. Invasive terrestrial plants can produce allelochemicals which suppress native terrestrial biodiversity. However, it is not known if leached allelochemicals from invasive plants growing in riparian zones, such as Impatiens glandulifera, also affect freshwater ecosystems. We used mesocosms and laboratory experiments to test the impact of I. glandulifera on a simplified freshwater food web. Our mesocosm experiments show that leachate from I. glandulifera significantly reduced population growth rate of the water flea Daphnia magna and the green alga Acutodesmus obliquus, both keystone species of lakes and ponds. Laboratory experiments using the main allelochemical released by I. glandulifera, 2‐methoxy‐1,4‐naphthoquinone, revealed negative fitness effects in D. magna and A. obliquus. Our findings show that allelochemicals from I. glandulifera not only reduce biodiversity in terrestrial habitats but also pose a threat to freshwater ecosystems, highlighting the necessity to incorporate cross‐ecosystem effects in the risk assessment of invasive species.  相似文献   
4.
Denitrifying bacteria were enriched from freshwater sediment with added nitrate as electron acceptor and crude oil as the only source of organic substrates. The enrichment cultures were used as laboratory model systems for studying the degradative potential of denitrifying bacteria with respect to crude oil constituents, and the phylogenetic affiliation of denitrifiers that are selectively enriched with crude oil. The enrichment culture exhibited two distinct growth phases. During the first phase, bacteria grew homogeneously in the aqueous phase, while various C1–C3 alkylbenzenes, but no alkanes, were utilized from the crude oil. During the second phase, bacteria also grew that formed aggregates, adhered to the crude oil layer and emulsified the oil, while utilization of n -alkanes (C5 to C12) from the crude oil was observed. During growth, several alkylbenzoates accumulated in the aqueous phase, which were presumably formed from alkylbenzenes. Application of a newly designed, fluorescently labelled 16S rRNA-targeted oligonucleotide probe specific for the Azoarcus / Thauera group within the β-subclass of Proteobacteria revealed that the majority of the enriched denitrifiers affiliated with this phylogenetic group.  相似文献   
5.
Desulfotalea psychrophila is a marine sulfate-reducing delta-proteobacterium that is able to grow at in situ temperatures below 0 degrees C. As abundant members of the microbial community in permanently cold marine sediments, D. psychrophila-like bacteria contribute to the global cycles of carbon and sulfur. Here, we describe the genome sequence of D. psychrophila strain LSv54, which consists of a 3 523 383 bp circular chromosome with 3118 predicted genes and two plasmids of 121 586 bp and 14 663 bp. Analysis of the genome gave insight into the metabolic properties of the organism, e.g. the presence of TRAP-T systems as a major route for the uptake of C(4)-dicarboxylates, the unexpected presence of genes from the TCA cycle, a TAT secretion system, the lack of a beta-oxidation complex and typical Desulfovibrio cytochromes, such as c(553), c(3) and ncc. D. psychrophila encodes more than 30 two-component regulatory systems, including a new Ntr subcluster of hybrid kinases, nine putative cold shock proteins and nine potentially cold shock-inducible proteins. A comparison of D. psychrophila's genome features with those of the only other published genome from a sulfate reducer, the hyperthermophilic archaeon Archaeoglobus fulgidus, revealed many striking differences, but only a few shared features.  相似文献   
6.
Pirellula sp. strain 1 is a marine bacterium that can grow with the chitin monomer N-acetylglucosamine as sole source of carbon and nitrogen under aerobic conditions, and that is a member of the bacterial phylum Planctomycetes. As a basis for the proteomic studies we quantified growth of strain 1 with N-acetylglucosamine and glucose, revealing doubling times of 14 and 10 h, respectively. Studies with dense cell suspensions indicated that the capacity to degrade N-acetylglucosamine and glucose may not be tightly regulated. Proteins from soluble extracts prepared from exponential cultures grown either with N-acetylglucosamine or glucose were separated by two-dimensional gel electrophoresis and visualized by fluorescence staining (Sypro Ruby). Analysis of the protein patterns revealed the presence of several protein spots only detectable in soluble extracts of N-acetylglucosamine grown cells. Determination of amino acid sequences and peptide mass fingerprints from tryptic fragments of the most abundant one of these spots allowed the identification of the coding gene on the genomic sequence of Pirellula sp. strain 1. This gene showed similarities to a dehydrogenase from Bacillus subtilis, and is closely located to a gene similar to glucosamine-6-phosphate isomerase from B. subtilis. Genes of two other proteins expressed during growth on N-acetylglucosamine as well as on glucose were also identified and found to be similar to a glyceraldehyde-3-phosphate-dehydrogenase and a NADH-dehydrogenase, respectively. Thus the coding genes of three proteins expressed during growth of Pirellula sp. strain 1 on carbohydrates were identified and related by sequence similarity to carbohydrate metabolism.  相似文献   
7.
The anaerobic degradation pathway of the saturated hydrocarbon n-hexane in a denitrifying strain (HxN1) was examined by gas chromatography-mass spectrometry of derivatized extracts from cultures grown with unlabeled and deuterated substrate; several authentic standard compounds were included for comparison. The study was focused on possible reaction steps that follow the initial formation of (1-methylpentyl)succinate from n-hexane and fumarate. 4-Methyloctanoic, 4-methyloct-2-enoic, 2-methylhexanoic, 2-methylhex-2-enoic and 3-hydroxy-2-methylhexanoic acids (in addition to a few other methyl-branched acids) were detected in n-hexane-grown but not in n-hexanoate-grown cultures. Labeling indicated preservation of the original carbon chain of n-hexane in these acids. Tracing of the deuterium label of 3- d1-(1-methylpentyl)succinate in tentative subsequent products indicated a deuterium/carboxyl carbon exchange in the succinate moiety. This suggests that the metabolism of (1-methylpentyl)succinate employs reactions analogous to those in the established conversion of succinyl-CoA via methylmalonyl-CoA to propionyl-CoA. Accordingly, a pathway is proposed in which (1-methylpentyl)succinate is converted to the CoA-thioester, rearranged to (2-methylhexyl)malonyl-CoA and decarboxylated (perhaps by a transcarboxylase) to 4-methyloctanoyl-CoA. The other identified fatty acids match with a further degradation of 4-methyloctanoyl-CoA via rounds of conventional beta-oxidation. Such a pathway would also allow regeneration of fumarate (for n-hexane activation) from propionyl-CoA formed as intermediate and hence present a cyclic process.  相似文献   
8.
In vitro biodegradation experiments were done using some probiotic microorganisms. DifferentSaccharomyces cerevisiae, Lactobacilli andBacilli strains were tested for their ability to degrade Nivalenol (NIV), Deoxynivalenol (DON), Diacetoxyscirpenol (DAS), T2-Toxin and Ochratoxin A (OTA). The concentrations of selected mycotoxins were in the range of natural occurring toxin contaminations (1ppm for NIV and DON, 500ppb for DAS and T-2 and 50ppb for OTA). No alteration of concentrations could be registered for the tested trichothecenes. The best results could be achieved in experiments with OTA by up to 94% detoxification. Influence of toxins on colony forming unit of all tested microorganisms were recorded. Especially T-2 toxin and DAS have a slowing effect on growth of some strains.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号