首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  2001年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
Gichuki  J.  Guebas  F. Dahdouh  Mugo  J.  Rabuor  C.O.  Triest  L.  Dehairs  F. 《Hydrobiologia》2001,450(1-3):99-106
The release of phosphate from anoxic sediments is still not precisely understood. The proposal by Einsele (1936), later adapted by Mortimer (1941, 1942), that this release is caused by the reduction of a FeOOH-phosphate complex, is generally accepted as the reaction mechanism, although there is no experimental evidence for it. Golterman (1995a) and De Groot (1991) have shown that this P-release may indeed be brought about by H2S, but only if a large excess of H2S is available. In lakes, however, the reducing capacity is relatively small as most of the organic carbon produced by primary production is used for other reduction processes. The solubilization of apatite is a likely alternative, as anoxic conditions are automatically concomitant with a pH decrease, and in hard waters the formation of apatite is well demonstrated. This mechanism is not active in soft waters, such as those studied by Mortimer. Another proposed process is the release of polyphosphate by sediment bacteria. Experimental evidence for this mechanism is, however, weak. The fourth possibility is the need for bacteria to mineralize a larger part of the sediment organic matter under anoxic conditions in order to obtain the same amount of energy, as some energy will be retained in the fermentation products. There is circumstantial evidence for this hypothesis, but laboratory experiments are needed before real evidence will be available.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号