首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   1篇
  国内免费   2篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2020年   1篇
  2017年   1篇
  2016年   3篇
  2015年   2篇
  2014年   2篇
  2013年   3篇
  2011年   2篇
  2010年   1篇
  2008年   10篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  1991年   1篇
  1964年   1篇
排序方式: 共有41条查询结果,搜索用时 31 毫秒
1.
Biological CO2 sequestration through acetogenesis with H2 as electron donor is a promising technology to reduce greenhouse gas emissions. Today, a major issue is the presence of impurities such as hydrogen sulfide (H2S) in CO2 containing gases, as they are known to inhibit acetogenesis in CO2-based fermentations. However, exact values of toxicity and inhibition are not well-defined. To tackle this uncertainty, a series of toxicity experiments were conducted, with a mixed homoacetogenic culture, total dissolved sulfide concentrations ([TDS]) varied between 0 and 5 mM and pH between 5 and 7. The extent of inhibition was evaluated based on acetate production rates and microbial growth. Maximum acetate production rates of 0.12, 0.09 and 0.04 mM h-1 were achieved in the controls without sulfide at pH 7, pH 6 and pH 5. The half-maximal inhibitory concentration (IC50qAc) was 0.86, 1.16 and 1.36 mM [TDS] for pH 7, pH 6 and pH 5. At [TDS] above 3.33 mM, acetate production and microbial growth were completely inhibited at all pHs. 16S rRNA gene amplicon sequencing revealed major community composition transitions that could be attributed to both pH and [TDS]. Based on the observed toxicity levels, treatment approaches for incoming industrial CO2 streams can be determined.  相似文献   
2.
Both natural and anthropogenic processes are responsible for excessive organic loading of submerged soils, with detrimental environmental consequences. The often insufficient natural attenuation can be enhanced by exploiting microbial manganese cycles. This review describes how an anoxic oxidation of organic matter with concomitant reduction of MnO 2 can link up with a reoxidation of the resulting, soluble Mn(II) in oxic layers. The potentially attainable oxidation rates through these natural cycles are of the same order as the organic carbon accumulation rates. The microbiology and physiology of the responsible organisms are discussed, as well as examples of naturally occurring manganese cycles and the possibility to engineer this natural phenomenon.  相似文献   
3.
4.
The micromorphology of pits in tracheary elements was examined in 35 species representing 29 genera of Rosaceae and related families to evaluate the assumption that angiosperm pits are largely invariant. In most Rosaceae, pit membranes between fibers and tracheids frequently appear to have amorphous thickenings with an irregular distribution. Although these structures are torus-like under the light microscope, observations by electron microscopy illustrate that they represent "pseudotori" or plasmodesmata-associated thickenings. These thickenings frequently extend from the periphery of the pit membrane and form a cap-like, hollow structure. Pseudotori are occasionally found in few Elaeagnaceae and Rhamnaceae and appear to be related to species with fiber-tracheids and/or tracheids. True tori are strongly associated with round to oval pit apertures and are consistently present in narrow tracheary elements of Cercocarpus (Rosaceae), Planera (Ulmaceae), and ring-porous species of Ulmus and Zelkova (Ulmaceae). Vestured pits with homogenous pit membranes are reported for Hemiptelea (Ulmaceae). The homoplastic nature of pit membrane characteristics may be related to functional adaptations in terms of safety and efficiency of water transport or may reflect different developmental processes of xylem elements. These observations illustrate that there is more variation in angiosperm pits than previously thought.  相似文献   
5.

Background  

Microbial fuel cells (MFCs) rely on electrochemically active bacteria to capture the chemical energy contained in organics and convert it to electrical energy. Bacteria develop biofilms on the MFC electrodes, allowing considerable conversion capacity and opportunities for extracellular electron transfer (EET). The present knowledge on EET is centred around two Gram-negative models, i.e. Shewanella and Geobacter species, as it is believed that Gram-positives cannot perform EET by themselves as the Gram-negatives can. To understand how bacteria form biofilms within MFCs and how their development, structure and viability affects electron transfer, we performed pure and co-culture experiments.  相似文献   
6.
In a microbial bioelectrochemical system (BES), organic substrate such as glycerol can be reductively converted to 1,3-propanediol (1,3-PDO) by a mixed population biofilm growing on the cathode. Here, we show that 1,3-PDO yields positively correlated to the electrons supplied, increasing from 0.27 ± 0.13 to 0.57 ± 0.09 mol PDO mol−1 glycerol when the cathodic current switched from 1 A m−2 to 10 A m−2. Electrochemical measurements with linear sweep voltammetry (LSV) demonstrated that the biofilm was bioelectrocatalytically active and that the cathodic current was greatly enhanced only in the presence of both biofilm and glycerol, with an onset potential of −0.46 V. This indicates that glycerol or its degradation products effectively served as cathodic electron acceptor. During long-term operation (> 150 days), however, the yield decreased gradually to 0.13 ± 0.02 mol PDO mol−1 glycerol, and the current–product correlation disappeared. The onset potentials for cathodic current decreased to −0.58 V in the LSV tests at this stage, irrespective of the presence or absence of glycerol, with electrons from the cathode almost exclusively used for hydrogen evolution (accounted for 99.9% and 89.5% of the electrons transferred at glycerol and glycerol-free conditions respectively). Community analysis evidenced a decreasing relative abundance of Citrobacter in the biofilm, indicating a community succession leading to cathode independent processes relative to the glycerol. It is thus shown here that in processes where substrate conversion can occur independently of the electrode, electroactive microorganisms can be outcompeted and effectively disconnected from the substrate.  相似文献   
7.
Previous studies revealed the abundance of Pseudomonas sp. in the microbial community of a microbial fuel cell (MFC). These bacteria can transfer electrons to the electrode via self-produced phenazine-based mediators. A MFC fed with acetate where several Pseudomonas sp. were present was found to be rich in a Gram-positive bacterium, identified as Brevibacillus sp. PTH1. Remarkably, MFCs operated with only the Brevibacillus strain in their anodes had poor electricity generation. Upon replacement of the anodic aqueous part of Brevibacillus containing MFCs with the cell-free anodic supernatants of MFCs operated with Pseudomonas sp. CMR12a, a strain producing considerable amounts of phenazine-1-carboxamide (PCN) and biosurfactants, the electricity generation was improved significantly. Supernatants of Pseudomonas sp. CMR12a_Reg, a regulatory mutant lacking the ability to produce PCN, had no similar improvement effect. Purified PCN, together with rhamnolipids as biosurfactants (1 mg L−1), could clearly improve electricity generation by Brevibacillus sp. PTH1, as well as enable this bacterium to oxidize acetate with concomitant reduction of ferric iron, supplied as goethite (FeOOH). When added alone, PCN had no observable effects on Brevibacillus’ electron transfer. This work demonstrates that metabolites produced by Pseudomonas sp. enable Gram-positive bacteria to achieve extracellular electron transfer. Possibly, this bacterial interaction is a key process in the anodic electron transfer of a MFC, enabling Brevibacillus sp. PTH1 to achieve its dominance. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
8.
9.
Microbial fuel cells hold great promise as a sustainable biotechnological solution to future energy needs. Current efforts to improve the efficiency of such fuel cells are limited by the lack of knowledge about the microbial ecology of these systems. The purposes of this study were (i) to elucidate whether a bacterial community, either suspended or attached to an electrode, can evolve in a microbial fuel cell to bring about higher power output, and (ii) to identify species responsible for the electricity generation. Enrichment by repeated transfer of a bacterial consortium harvested from the anode compartment of a biofuel cell in which glucose was used increased the output from an initial level of 0.6 W m(-2) of electrode surface to a maximal level of 4.31 W m(-2) (664 mV, 30.9 mA) when plain graphite electrodes were used. This result was obtained with an average loading rate of 1 g of glucose liter(-1) day(-1) and corresponded to 81% efficiency for electron transfer from glucose to electricity. Cyclic voltammetry indicated that the enhanced microbial consortium had either membrane-bound or excreted redox components that were not initially detected in the community. Dominant species of the enhanced culture were identified by denaturing gradient gel electrophoresis and culturing. The community consisted mainly of facultative anaerobic bacteria, such as Alcaligenes faecalis and Enterococcus gallinarum, which are capable of hydrogen production. Pseudomonas aeruginosa and other Pseudomonas species were also isolated. For several isolates, electrochemical activity was mainly due to excreted redox mediators, and one of these mediators, pyocyanin produced by P. aeruginosa, could be characterized. Overall, the enrichment procedure, irrespective of whether only attached or suspended bacteria were examined, selected for organisms capable of mediating the electron transfer either by direct bacterial transfer or by excretion of redox components.  相似文献   
10.
Towards practical implementation of bioelectrochemical wastewater treatment   总被引:8,自引:0,他引:8  
Bioelectrochemical systems (BESs), such as microbial fuel cells (MFCs) and microbial electrolysis cells (MECs), are generally regarded as a promising future technology for the production of energy from organic material present in wastewaters. The current densities that can be generated with laboratory BESs now approach levels that come close to the requirements for practical applications. However, full-scale implementation of bioelectrochemical wastewater treatment is not straightforward because certain microbiological, technological and economic challenges need to be resolved that have not previously been encountered in any other wastewater treatment system. Here, we identify these challenges, provide an overview of their implications for the feasibility of bioelectrochemical wastewater treatment and explore the opportunities for future BESs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号