首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
  2010年   1篇
  1982年   1篇
  1980年   1篇
  1978年   2篇
  1977年   1篇
  1976年   3篇
  1975年   4篇
  1970年   3篇
排序方式: 共有16条查询结果,搜索用时 93 毫秒
1.
Cold root temperature affected infection thread proliferation,cell invasion, and release of Rhizobium and the subsequent developmentof this infection in Trifotium subterraneum. These events werealso modified by both host cultivar and bacterial strain. At7 °C bacteroid development was only substantial with strainTA1, with either sparsely or abundantly nodulating lines ofthe host. At 11 °C strain SU297 also readily formed effective,bacteroid-filled nodules with both lines. Strain 0403 formeda few bacteroids with the abundant line only at 7 °C andreadily formed bacteroids with the sparse line only at 19 °C.At 15 °C 0403 nodules were effective on abundant lines,but mostly ineffective on sparse lines. The development of Rhizobium rods into bacteroicis and theirsubsequent degeneration wa slower at low temperatures with bothstrains. Low root temperatures favoured the deposition of starchthroughout the nodule. At higher temperatures, when bacteroidswere more active in nitrogen fixation, starch was mostly confinedto a narrow band of the youngest bacteroid filled cells andto the zone of bacteroid degeneration.  相似文献   
2.
Both host cultivar and Rhizobium strain influence the numberof infected root hairs of Trifolium subl-errctneum, seedlings;Yarloop had fewer infections than Cranmore, Mount Barker, orTallarook and Rhizobium trifolii strain 5 infected fewer hairsthan strain TA1. Hybrid lines bred for sparse or abundant nodulationhad similar numbers of infected hairs, but. as in the cultivars,these always greatly exceeded the number of nodules formed.More infection threads aborted early during growth in the roothairs of Cranmore than in other hosts and early abortion wasmore common with strain 5 than strain TA1 In all hosts and with both Rhizobium strains, infection beganon day 3 and was initially restricted to one or two zones alongthe root with later infections extending these zones or initiatingnew ones. The exponential rate of infection (least for Yarloop)slows sharply when nodules appear. Early nodules and lateral roots formed at different places indifferent hosts, and in most cultivars and hybrid lines nodulesand laterals occurred in mutually exclusive zones. Primordiaarising above the first nodule failed to develop.  相似文献   
3.
Root temperature greatly affected plant growth whether or notplants depended on symbiotic nitrogen fixation. The two plantselections responded differently to the three strains of Rhizobiumand this response was differentially affected by root temperature. Plant yield was significantly decreased by each fall of 4 °Cin temperature from 19 to 7 °C by amounts that dependedboth on the host and Rhizobium strain. Symbiosis with strainTA1, originally isolated from a cold environment, was most tolerantof a root temperature of 11 °C; TA1 produced as much ormore plant material of the abundantly nodulating host in 40days growth at 7 and 11 °C as did the uninoculated plantsgiven KNO3. Root temperature affected the number, rate of formation, anddistribution of nodules on the root system. At 7 °C fewernodules formed than between 11 and 19 °C. At 7 °C nodulesdid not form on secondary roots by 40 days but at 11 °Cthe secondary roots nodulated rapidly between 30 and 40 days.Nodule formation at 19 °C was almost completed at 20 days,when secondary root nodules accounted for 60 per cent of thetotal. Within the range 15 to 19 °C, at which the originalselections for sparse and abundant nodulation were made, plantsnodulated true to selection, but not at 11 °C. At 7 and11 °C plants nodulated with TA1 yielded more with increasingnumber of nodules.  相似文献   
4.
5.
Infection and Root-Nodule Development in Stylosanthes Species by Rhizobium   总被引:4,自引:0,他引:4  
Root nodules of the tropical forage legume Stylosanthes occurredonly at lateral root junctions and resulted from direct invasionby rhizobia through spaces between epidermal cells. No infectionthreads were present in either the root hairs or nodules. Invasionof the host cortical cells was through structurally alteredcell walls. The bacteria reached the site of nodule initiationin the lateral root cortex by progressive collapse of the initiallyinvaded cells which were compressed by neighbouring cells toform intercellular thread-like infection zones. The bacteriamultiplied in the invaded cells of the nodule initial whichdivided repeatedly to form the nodule. Bacteroids formed onlywhen the host cells ceased to divide. Some abnormal associations occurred in S. capltata and S. hamata40264A. Division of invaded cells was restricted in S. capitataand the bacteria became enlarged and grossly deformed. In S.hamata restricted cell division was immediastely followed bythe brcakdown of the host cells and, although the bacteria multiplied,no bacteroids were formed. Bacteria isolated from these nodulesformed both effective and abnormal nodules when inoculated ontothe same host.  相似文献   
6.
This paper reports the first tests of the suitability of the standardized mitochondrial cytochrome c oxidase subunit I (COI) barcoding system for the identification of Canadian deerflies and horseflies. Two additional mitochondrial molecular markers were used to determine whether unambiguous species recognition in tabanids can be achieved. Our 332 Canadian tabanid samples yielded 650 sequences from five genera and 42 species. Standard COI barcodes demonstrated a strong A + T bias (mean 68.1%), especially at third codon positions (mean 93.0%). Our preliminary test of this system showed that the standard COI barcode worked well for Canadian Tabanidae: the target DNA can be easily recovered from small amounts of insect tissue and aligned for all tabanid taxa. Each tabanid species possessed distinctive sets of COI haplotypes which discriminated well among species. Average conspecific Kimura two‐parameter (K2P) divergence (0.49%) was 12 times lower than the average divergence within species. Both the neighbour‐joining and the Bayesian methods produced trees with identical monophyletic species groups. Two species, Chrysops dawsoni Philip and Chrysops montanus Osten Sacken (Diptera: Tabanidae), showed relatively deep intraspecific sequence divergences (~10 times the average) for all three mitochondrial gene regions analysed. We suggest provisional differentiation of Ch. montanus into two haplotypes, namely, Ch. montanus haplomorph 1 and Ch. montanus haplomorph 2, both defined by their molecular sequences and by newly discovered differences in structural features near their ocelli.  相似文献   
7.
The growth of a strain of Rhizobium trifolii and of R. meliloti was studied in broth and peat cultures to determine the relative toxicity of Na+ and Cl-. The following salts were added in a range of concentrations: Na2HPO4 as a source of Na+, CaCl2.2H2O as a source of Cl-, and NaCl. Disodium hydrogen orthophosphate affected the growth rate of both strains in broth culture but not in peat culture. Unexpectedly, calcium chloride was more toxic than NaCl in broth and peat culture. The toxicity of NaCl can be ascribed to the Cl-. Rhizobium meliloti strains grew on 3·5% NaCl after adaptation during a long period. Rhizobia for soya bean and cowpea grew at 0·5% NaCl and those for clover and pea, at 1·0% NaCl.  相似文献   
8.
ROUGHLEY  R. J. 《Annals of botany》1970,34(3):631-646
Low root temperature greatly affected the structure and N2-fixingefficiency of root nodules. More nodule tissue was formed perplant at 11 and 15 °C than at 7 and 19 °C. Low roottemperatures either prevented or slowed bacteroid differentiation;the differentiation zone was 19 per cent of the total noduletissue at 7 °C but only 5 per cent at 19 °C. The amount of bacteroid tissue formed at the different roottemperatures by the two fully effective strains TAi and SU297reflected the environment from which they originated. Both formedthe same amount at 15 and 19 °C but only TAI, which originatedfrom a cold environment formed bacteroids at 7 °C. At 7°C a bacteroid-filled cell did not degenerate until after20 days, cf. less than 10 days at 19 °C. At 7 and 11 °Call strains formed more bacteroids in the abundantly nodulatingthan in the sparse host independently of nodule number. Strain0403 was most sensitive to both temperature and host; it formedbacteroids in nodules on the sparse host at 19 °C only,but formed bacteroids in the abundant host between 7–19°C. The amount of bacteroid tissue formed by TAI and SU297 dependeddirectly on nodule number and was approximately constant between20–40 days only at 19 °C when nodule formation hadalmost stopped. The optimum temperature for maximum fixation of nitrogen wasnot necessarily that for maximum efficiency of fixation, whichfor these experiments was 51 ug N mm-3 bacteroid tissue perday.  相似文献   
9.
The structure of effective nodules on Trifolium subterraneumL. grown at a root temperature favourable for nitrogen fixationwas examined by light microscopy. Rhizobium were released intohost cells from vesicles on infection threads which were closelyassociated with the host cell nucleus. Enlargement into bacteroidforms was rapid and synchronous in similarly-aged host cells,but groups of rhizobia close to the nucleus sometimes did notdevelop into bacteroids. Rhizobium changed in shape from smallrods to more elongate and then to irregularly swollen formsbefore finally becoming coccoid. On degeneration clusters ofbacteroids became un evenly stained before coalescing at thecentre of the host cell and finally disintegrating. Small vegetativerods multiplied amongst the degenerating bacteroids and in thegreatly enlarged intercellular spaces; host cell walls becamefolded and distorted and sometimes broke before collapsing ontoeach other.  相似文献   
10.
Cowpeas, inoculated with one of five effective strains of Rhizobium isolated from African soils, were grown at root temperatures of 30 oC continuously or at 36, 38, 40, 42 and 44 oC for 5 h/day and returned to glasshouse ambient for the intermediate period. Growth was best at 30 and 36 oC; above 40 oC growth was poor and no nodules formed. At 40 oC two strains failed to nodulate. Symbiotic performance was not dependent only on nodule production as nodule efficiency varied inversely with temperature. The number of nodules formed by strain R5000 after exposure of inoculated seed or seedlings to 40,42 or 44 oC for 5 h/day on each of 3 or 6 days depended on the age of plant and the duration of exposure to stress. When exposed to 42 or 44 oC during the first 3 days after sowing nodulation was reduced from 18 to 1–3 nodules/plant even after a further 40 days growth at ambient (30 day, 20 oC night). Nodulation was unaffected when 10–15-day-old seedlings were exposed to the same conditions. Numbers of strain R5000 on seed declined rapidly following three daily exposures of 5 h at 39 and 42 oC; at 45 oC less than three bacteria survived on each seed. Other rhizobia of the cowpea group varied greatly in their toleration of high temperatures, some survived well at 45 oC whereas others behaved like R5000.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号