首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   1篇
  2017年   1篇
  2013年   1篇
  2010年   3篇
  2009年   4篇
  2008年   6篇
  2007年   5篇
  2006年   2篇
  2005年   1篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
排序方式: 共有28条查询结果,搜索用时 15 毫秒
1.
The ability to predict C cycle responses to temperature changes depends on the accurate representation of temperature sensitivity (Q10) of soil organic matter (SOM) decomposition in C models for different C pools and soil depths. Theoretically, Q10 of SOM decomposition is determined by SOM quality and availability (referred to here as SOM protection). Here, we focus on the role of SOM protection in attenuating the intrinsic, SOM quality dependent Q10. To assess the separate effects of SOM quality and protection, we incubated topsoil and subsoil samples characterized by differences in SOM protection under optimum moisture conditions at 25 °C and 35 °C. Although lower SOM quality in the subsoil should lead to a higher Q10 according to kinetic theory, we observed a much lower overall temperature response in subsoil compared with the topsoil. Q10 values determined for respired SOM fractions of decreasing lability within the topsoil increased from 1.9 for the most labile to 3.8 for the least labile respired SOM, whereas corresponding Q10 values for the subsoil did not show this trend (Q10 between 1.4 and 0.9). These results indicate the existence of a limiting factor that attenuates the intrinsic effect of SOM quality on Q10 in the subsoil. A parallel incubation experiment of 13C‐labeled plant material added to top‐ and subsoil showed that decomposition of an unprotected C substrate of equal quality responds similarly to temperature changes in top‐ and subsoil. This further confirms that the attenuating effect on Q10 in the subsoil originates from SOM protection rather than from microbial properties or other nutrient limitations. In conclusion, we found experimental evidence that SOM protection can attenuate the intrinsic Q10 of SOM decomposition.  相似文献   
2.
Abstract: Latinos in the United States are an increasing segment of the population and are becoming important stakeholders in the management of natural resources. Although Latinos have been included in attitudinal research on environmental concerns, few studies have focused exclusively on Latino attitudes toward natural resources and the environment. We surveyed Texas college and university students of Mexican descent (n = 635) to determine their environmental concerns. Using the New Ecological Paradigm (NEP), we determined an environmental concern score for each respondent and compared this index to several demographic variables. We found that gender, a political candidate's environmental position, mother's education, combined parental income, and, to a lesser degree, the number of grandparents born in the United States and religiosity (church attendance), were important model variables. We hypothesized that acculturation would be an important factor in predicting NEP scores; however, acculturation level was not an important predictor in our study, which we attribute to both the nature of our sample (i.e., highly acculturated college students) and small sample sizes of less-acculturated college students. We recommend that future research consider determining the importance of acculturation in Latino attitudes toward natural resources and the environment.  相似文献   
3.
Abstract: Tree squirrels are one of the most familiar mammals found in urban areas and are considered both desirable around homes and, conversely, a pest. We examined fox squirrel (Sciurus niger) habitat use in inner city and suburban areas using radiotelemetry. We estimated habitat selection ratios at differing scales by season and fox squirrel activity. Telemetry data suggests that during periods of inactivity radiocollared fox squirrels (n = 82) selected 1) areas with greater tree canopy, 2) live oaks (Quercus fusiromis and Q. virginiana), and 3) trees with larger diameters and canopies. When inactive during the winter and spring, fox squirrels also preferred, within their core areas, to use the inside of buildings, and during periods of activity in the autumn and spring, fox squirrels preferred grassy areas. During periods of activity, fox squirrels avoided using pavement but did not exclude it from their core-area movements. Fox squirrels' ability to use buildings and to tolerate pavement in core-area movements make vast areas of the urban environment available to fox squirrels. In evaluating habitat variables that increased fox squirrel activity in urban areas, we found the number of large and medium trees, amount of pavement and grassy areas, canopy cover, number of oaks, and the area covered by buildings were all important factors in predicting fox squirrel activity in an urban environment. Our data suggests urban planners, animal damage control officials, wildlife managers, and landscapers who want to control urban fox squirrel populations through habitat manipulation should consider the reduction of oaks trees, a reduction of the canopy cover, and restricting the access of fox squirrels to buildings. Alternatively, home owners and squirrel enthusiasts hoping to bolster fox squirrel populations in urban areas should consider increasing the number of large mast—bearing trees and canopy cover and providing nest boxes.  相似文献   
4.
Abstract: We used radiotelemetry to locate daytime forms of endangered Lower Keys marsh rabbits (LKMRs; Sylvilagus palustris hefneri) throughout their range so we could determine habitat characteristics of diurnal cover. We typically found forms (n = 1,298) of 36 rabbits in brackish wetlands in patches of saltmarsh or buttonwoods. In freshwater wetlands, forms (n = 54) were located most often in patches of freshwater hardwoods embedded in or adjacent to freshwater marshes. Forms (n = 942) in brackish wetlands were characterized by thick groundcover (>75%), whereas those (n = 42) in freshwater wetlands had both thick groundcover and canopy vegetation. The mean minimum convex polygon around forms of 15 rabbits was 1.4 ha (SD = 1.7), with smaller ranges characterized by thick bunchgrasses or clump-forming sedges. To increase the amount of annual space usable by LKMRs, managers should provide more saltmarsh habitat interspersed with buttonwoods and enhance ground cover in existing habitat.  相似文献   
5.
Tropical forests will experience relatively large changes in temperature and rainfall towards the end of this century. Little is known about how tropical trees will respond to these changes. We used tree rings to establish climate‐growth relations of a pioneer tree, Mimosa acantholoba, occurring in tropical dry secondary forests in southern Mexico. The role of large‐scale climatic drivers in determining interannual growth variation was studied by correlating growth to sea surface temperature anomalies (SSTA) of the Atlantic and Pacific Oceans, including the El Niño‐Southern Oscillation (ENSO). Annual growth varied eightfold over 1970–2007, and was correlated with wet season rainfall (r=0.75). Temperature, cloud cover and solar variation did not affect growth, although these climate variables correlated with growth due to their relations with rainfall. Strong positive correlations between growth and SSTA occurred in the North tropical Atlantic during the first half of the year, and in the Pacific during the second half of the year. The Pacific influence corresponded closely to ENSO‐like influences with negative effects of high SSTA in the eastern Pacific Niño3.4 region on growth due to decreases in rainfall. During El Niño years growth was reduced by 37%. We estimated how growth would be affected by the predicted trend of decreasing rainfall in Central America towards the end of this century. Using rainfall predictions of two sets of climate models, we estimated that growth at the end of this century will be reduced by 12% under a medium (A1B) and 21% under a high (A2) emission scenario. These results suggest that climate change may have repercussions for the carbon sequestration capacity of tropical dry forests in the region.  相似文献   
6.
1. High water column NO3? concentrations, low light availability and anoxic, muddy sediments are hypothesised to be key factors hampering growth of rooted submerged plants in shallow, eutrophic fresh water systems. In this study, the relative roles and interacting effects of these potential stressors on survival, growth, allocation of biomass and foliar nutrient concentrations of Potamogeton alpinus were determined in a mesocosm experiment using contrasting values of each factor (500 versus 0 μmol L?1 NO3?; low irradiance, corresponding to the eutrophic environment, versus ambient irradiance; and muddy versus sandy sediment). 2. Low irradiance, high NO3? and sandy sediment led to reduced growth. In a muddy sediment, plants had lower root : shoot ratios than in a sandy sediment. 3. Growth at high NO3? and on the sandy sediment resulted in lower foliar N and C concentrations than in the contrasting treatments. The C : N ratio was higher at high NO3? and on the sandy sediment. Foliar P was higher on the muddy than on the sandy sediment but was not affected by irradiance or NO3?. The N : P ratio was lowest at high NO3? on the sandy sediment. 4. Total foliar free amino acid concentration was lowest on sand, low irradiance and high NO3?. Total free amino acid concentration and growth were not correlated. 5. Turbidity and ortho‐PO43? concentration of the water layer were lower at high water column NO3? indicating that the growth reduction was not associated with increased algal growth but that physiological mechanisms were involved. 6. We conclude that high water column NO3? concentrations can significantly reduce the growth of ammonium preferring rooted submerged species such as P. alpinus, particularly on sediments with a relatively low nutrient availability. Further experiments are needed to assess potential negative effects on other species and to further elucidate the underlying physiological mechanisms.  相似文献   
7.
Broadbean plants (Vicia faba L.) were submitted to three differentlevels of steady state N limitation. Relative addition ratesof N were 0.06, 0.1 and 0.14d-1. Plants were harvested at fiveevenly distributed times over a 2d period. Shoot growth correspondedwell with the imposed treatment. Root growth, relative to shootgrowth, was highest at the 0.06d-1treatment. Diurnal patternsof soluble sugars, amino acids and starch were analysed. Onaverage, soluble sugar levels were highest in the plants ofthe 0.06d-1treatment whereas average free amino acid levelswere highest in the 0.14d-1treatment. Shoot growth increasedas the concentration of shoot amino acids increased. No suchcorrelation however could be found between root growth and freesugar levels in the root. Broadbean; Vicia faba L.; exponential addition; N limitation; free sugar; amino acids; diurnal cycle; functional equilibrium; starch  相似文献   
8.
While nectaries are commonly found in flowers, some plants also form extrafloral nectaries on stems or leaves. For the first time in the family Brassicaceae, here we report extrafloral nectaries in Brassica juncea. The extrafloral nectar (EFN) was secreted from previously amorphic sites on stems, flowering stalks and leaf axils from the onset of flowering until silique formation. Transverse sections at the point of nectar secretion revealed a pocket‐like structure whose opening was surrounded by modified stomatal guard cells. The EFN droplets were viscous and up to 50% of the total weight was sugars, 97% of which was sucrose in the five varieties of B. juncea examined. Threonine, glutamine, arginine and glutamate were the most abundant amino acids. EFN droplets also contained glucosinolates, mainly gluconapin and sinigrin. Nectar secretion was increased when the plants were damaged by chewing above‐ and belowground herbivores and sap‐sucking aphids. Parasitoids of each herbivore species were tested for their preference, of which three parasitoids preferred EFN and sucrose solutions over water. Moreover, the survival and fecundity of parasitoids were positively affected by feeding on EFN. We conclude that EFN production in B. juncea may contribute to the indirect defence of this plant species.  相似文献   
9.
Enormous quantities of the free-floating freshwater fern Azolla grew and reproduced in situ in the Arctic Ocean during the middle Eocene, as was demonstrated by microscopic analysis of microlaminated sediments recovered from the Lomonosov Ridge during Integrated Ocean Drilling Program (IODP) Expedition 302. The timing of the Azolla phase (~48.5 Ma) coincides with the earliest signs of onset of the transition from a greenhouse towards the modern icehouse Earth. The sustained growth of Azolla , currently ranking among the fastest growing plants on Earth, in a major anoxic oceanic basin may have contributed to decreasing atmospheric p CO2 levels via burial of Azolla -derived organic matter. The consequences of these enormous Azolla blooms for regional and global nutrient and carbon cycles are still largely unknown. Cultivation experiments have been set up to investigate the influence of elevated p CO2 on Azolla growth, showing a marked increase in Azolla productivity under elevated (760 and 1910 ppm) p CO2 conditions. The combined results of organic carbon, sulphur, nitrogen content and 15N and 13C measurements of sediments from the Azolla interval illustrate the potential contribution of nitrogen fixation in a euxinic stratified Eocene Arctic. Flux calculations were used to quantitatively reconstruct the potential storage of carbon (0.9–3.5 1018 gC) in the Arctic during the Azolla interval. It is estimated that storing 0.9 1018 to 3.5 1018 g carbon would result in a 55 to 470 ppm drawdown of p CO2 under Eocene conditions, indicating that the Arctic Azolla blooms may have had a significant effect on global atmospheric p CO2 levels through enhanced burial of organic matter.  相似文献   
10.
1. Habitat structure, including vegetation structural complexity, largely determines invertebrate assemblages in semi‐natural grasslands. The importance of structural complexity to the saltmarsh invertebrate community, where the interplay between vegetation characteristics and tidal inundation is key, is less well known. 2. It was hypothesised that canopy complexity would be a more important predictor of spider and beetle assemblages than simple vegetation attributes (e.g. height, community type) and environmental variables (e.g. elevation) alone, measured in two saltmarsh regions, south‐east (Essex) and north‐west (Morecambe Bay) U.K. Canopy complexity (number of non‐vegetated ‘gaps’ in canopy ≥ 1 mm wide) was assessed using side‐on photography. Over 1500 spiders and beetles were sampled via suction sampling, winter and summer combined. 3. In summer, saltmarshes with abundant spider and beetle populations were characterised by high scores for canopy complexity often associated with tussocky grass or shrub cover. Simple vegetation attributes (plant cover, height) accounted for 26% of variation in spider abundance and 14% in spider diversity, rising to 46% and 41%, respectively, with the addition of canopy complexity score. Overwintering spider assemblages were associated with elevation and vegetation biomass. Summer beetle abundance, in particular the predatory and zoophagous group, and diversity were best explained by elevation and plant species richness. 4. Summer canopy complexity was identified as a positive habitat feature for saltmarsh spider communities (ground‐running hunters and sheet weavers) with significant ‘added value’ over more commonly measured attributes of vegetation structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号