首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
  23篇
  2018年   1篇
  2010年   2篇
  1997年   1篇
  1996年   1篇
  1992年   1篇
  1989年   2篇
  1987年   1篇
  1986年   1篇
  1982年   1篇
  1981年   4篇
  1980年   1篇
  1971年   2篇
  1958年   2篇
  1957年   1篇
  1951年   2篇
排序方式: 共有23条查询结果,搜索用时 0 毫秒
1.
The fatty acid synthesizing system from developing soybean cotyledonswas fractionated intoa precipitate fraction and a supernatantfraction using carbowax-4000. Both fractions were necessaryfor fatty acid synthesis. The supernatant fraction was heatstable, non-dialyzable and lost its activity when incubatedwith pronase. Fatty acid synthesis required NADH and NADPH aswell as ATP, KHCO3 and MnCl2. The crude enzyme produced stearicand oleic acid while the recombined system produced predominadystearic acid 1Presented in part at the American Society of Plant PhysiologistMeeting in Bloomington, Indiana, August 1970 (Received November 27, 1970; )  相似文献   
2.
Freshly harvested seeds of soybean (Glycine max L. Merr.) orseeds shelled, then dried, were non-viable. Seeds dried in intactpods, even when only 17% of normal size, matured into viableseeds and produced healthy plants. These seeds maintained activityof various enzymes but gained little soluble protein while air-dryingin intact pods. There was a qualitative change in seed proteinsassociated with maturation. Seeds matured in intact pods havea greater proportion of protein as slow-moving bands and havecompletely lost one fast-moving band compared with seeds shelledbefore drying. Seed maturation is a distinct phase of seed production,is independent of the parent plant, and can be imposed on theseed at many stages of development.  相似文献   
3.
Developing seeds of soya bean cultivars Chestnut and Altonahave only trace amounts of ß-amylase activity. Comparedto a standard variety, Wells, ß-amylase activitieswere 200–300 times lower in Chestnut and Altona. Nevertheless,Chestnut and Altona accumulate starch as a transient reservematerial which is utilized later in development. Seeds of Chestnutand Altona also produce starch early in germination which subsequentlydeclines after the 4th day of germination. Throughout germinationß-amylase levels in these cultivars are about 300-foldlower than that observed in Wells, which has a similar patternof starch metabolism. Widely varying levels of ß-amylasein both developing and germinating seeds appear to be unrelatedto starch metabolism which is very similar in all cultivarsstudied. Consequently, ß-amylase activity seems irrelevantto starch metabolism in the soya bean seed. starch, ß-amylase, Glycine max. (L.), Merr, soya bean  相似文献   
4.
    
Soya bean cultivars ‘Altona’ and ‘Chestnut’have active but quite low levels of -amylase. Activity was assayedwith specific substrates, oxidized amylose and ß-limitdextrin, which were resistant to attack by ß-amylase.During seed development -amylase activity increased to a maximumin both cultivars and then declined towards maturity. Matureand germinating seeds retain low activities of -amylase. Gelelectrophoresis separated the -amylase activity into six majorbands which occurred in both cultivars. The isozyme patternwas quite similar for developing, mature and germinating seed.although the relative proportion of activity in the variousbands changed somewhat. Starch phosphorylase was not detectedin any soya bean seed samples tested, but good activity wasfound in potato tuber extracts used as a control. Mixing experimentsusing soya bean and potato extracts indicated there were noinhibiting factors in soya bean seed extracts. Soya bean seedextracts probably do not contain starch phosphorylase. Glycine max (L.), Merr, soya bean, -amylase, isozymes, phosphorylase  相似文献   
5.
6.
Immature soya bean seeds accumulate starch as a transient reservematerial which is utilized later in development. Germinatingseeds also accumulate starch reserves, probably as a resultof gluconeogenesis from storage lipid. Developing beans showa rapid increase in ß-amylase activity which continuesinto early germination before declining. Distribution of ß-amylaseactivity is not consistent with its supposed role in starchdegradation. Soya bean seeds also contain -amylase and -glucosidaseactivities which could be responsible for starch mobilization. Glycine max (L.) Merr., soya bean, starch, carbohydrase, amylase, -glucosidase  相似文献   
7.
8.
Developing soybean cotyledons rapidly incorporated acetate intofatty acids and water soluble constituents. Oleic acid was thefirst fatty acid to be detected with 14C and the 14C distributionpattern with time was consistent with its being the precursorof linoleic and linolenic acids. Palmitic or stearic acid didnot appear to be the precursor of oleic acid but appeared tobeformed parallel to it. The cotyledons did fix 14CO2 by eitherdark or light fixation reactions but little 14C was incorporatedinto lipids. 1Presented in part at the Midwest Section of the American Societyof Plant Physiologist Meeting in Columbia, Missouri, June 1970 (Received November 27, 1970; )  相似文献   
9.
Rosenberg, L. A. and Rinne, R. W. 1986. Moisture loss as a prerequisitefor seedling growth in soybeanseeds (Glycine max L. Merr.).—J.exp. Bot. 37: 1663–1674. As soybean seeds [Glycine max (L.) Merr.] develop, they undergoa change in seed moisture. When excised prematurely from thepod and planted, seeds do not exhibit seedling growth until63 d after flowering (DAF) when the seed moisture has fallenbelow 60%. In contrast, seed germination (radicle protrusion)can occur when seeds as young as 35 DAF (68–79% moisture)are excised, but this germination docs not lead to comparableseedling growth frequencies unless seeds are first given a moistureloss treatment to artificially reduce their moisture below 60%.A moisture loss treatment applied at 35 DAF thus enables seedto undergo the transition from germination (cell expansion)to seedling growth (cell division and expansion) to the extentthat treated immature seed have a vigour index comparable toseeds matured on the plant (100%). The pattern of protein synthesisin vivo was examined in 35 DAF seed using [35S]-methionine incorporation.When moisture loss treatment was applied for 24 h to 35 DAFseeds, seeds synthesized several new polypeptides when comparedwith untreated seeds at the same developmental stage. The sameseed samples showed 0% seedling growth in the absence of moistureloss treatment and 80% seedling growth when the treatment hadbeen applied. Moisture loss from soybean seeds appears to bea prerequisite for the synthesis of new proteins which may bepart of the metabolic process or processes that allow the soybeanseed to undergo the transition from seed germination to seedlinggrowth. Key words: Moisture loss, germination/growth, soybean  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号