首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   148篇
  免费   4篇
  152篇
  2018年   2篇
  2015年   3篇
  2014年   1篇
  2013年   6篇
  2012年   5篇
  2010年   3篇
  2009年   7篇
  2008年   6篇
  2007年   4篇
  2006年   6篇
  2005年   5篇
  2004年   4篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1999年   2篇
  1998年   2篇
  1997年   5篇
  1996年   1篇
  1995年   4篇
  1994年   1篇
  1993年   1篇
  1991年   2篇
  1990年   1篇
  1989年   5篇
  1988年   1篇
  1987年   2篇
  1986年   3篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1978年   4篇
  1977年   1篇
  1976年   1篇
  1972年   1篇
  1971年   2篇
  1959年   1篇
  1958年   9篇
  1957年   4篇
  1956年   1篇
  1955年   4篇
  1954年   2篇
  1953年   4篇
  1952年   3篇
  1951年   5篇
  1950年   2篇
  1949年   7篇
  1948年   5篇
  1946年   1篇
  1874年   1篇
排序方式: 共有152条查询结果,搜索用时 15 毫秒
1.
2.
1. Stream ecosystems are the products of interactions between hydrology, geomorphology and ecology, but examining all three components simultaneously is difficult and rarely attempted. Frequently, either geomorphology or hydrology is treated as invariable or static. 2. To examine the validity of treating either hydrology or geomorphology as static, we studied the individual and combined effects of hydrology and channel geomorphology on coarse particulate organic matter (CPOM) storage. Using data from an experimental leaf release in a hydrologically regulated stream we created a simple numerical model. This allowed us to quantify the relative influence of CPOM trapping and CPOM retention on total long‐term CPOM storage under variable regimes of flood frequency and geomorphic structure. 3. CPOM storage is a function of supply, flood frequency and the type and frequency of in‐stream structures. In‐stream structures perform two distinct functions, trapping and retention, whose relative importance in leaf storage changes with stream hydrology. Trapping is more important for CPOM storage in streams with few floods, while retention is more important in streams with frequent floods. Different structures (e.g. boulders, large wood, small wood) perform these functions at different efficiencies. We found that large wood trapped two to three times more leaves than the bank, but that the bank retained leaves two to three times more efficiently. 4. A modelled channel with five times the amount of large wood as the study channel (a ‘wood restoration’) initially stored 14% more leaves than the modelled ‘natural’ channel. After six floods, however, the modelled wood restoration channel stored 50% less CPOM than the natural channel as the large wood had high trapping but poor retention. The modelled natural channel contained structures that could both trap and retain. Thus, as different structures performed different functions, the structural complexity buffered the stream allochthonous energy base against changes in hydrology through its balance of trapping and retention. 5. As the frequency of floods increased, the spatial distribution of CPOM became increasingly patchy as storage was driven entirely by structures with high retention. Thus, the coupling of flood frequency and geomorphic structure influenced CPOM availability, which in turn has ramifications for the entire stream food web.  相似文献   
3.
The serranid fish genus Liopropoma is represented in the Red Sea by two previously unrecorded species, the wide-ranging L. susumi (Jordan & Seale) and L. mitratum sp. nov. Liopropoma mitratum is known only from the Red Sea, and is overall reddish-pink in life with mustard yellow stripes on the head.  相似文献   
4.
5.
6.
We investigated mean residence time (MRT) for soil organic carbon (SOC) sampled from paired hardwood and pine forests located along a 22 °C mean annual temperature (MAT) gradient in North America. We used acid hydrolysis fractionation, radiocarbon analyses, long-term laboratory incubations (525-d), and a three-pool model to describe the size and kinetics of the acid insoluble C (AIC), active and slow SOC fractions in soil. We found that active SOC was 2 ± 0.2% (mean ± SE) of total SOC, with an MRT of 33 ± 6 days that decreased strongly with increasing MAT. In contrast, MRT for slow SOC and AIC (70 ± 6% and 27 ± 6% of total SOC, respectively) ranged from decades to thousands of years, and neither was significantly related to MAT. The accumulation of AIC (as a percent of total SOC) was greater in hardwood than pine stands (36% and 21%, respectively) although the MRT for AIC was longer in pine stands. Based on these results, we suggest that the responsiveness of most SOC decomposition in upland forests to global warming will be less than currently modeled, but any shifts in vegetation from hardwood to pine may alter the size and MRT of SOC fractions.  相似文献   
7.
1. Organisms associated with lotic systems rank among the most threatened because of global change. Although translocation is being increasingly applied as a conservation strategy, most studies have focused on survival and recruitment of individuals, and few have attempted to identify how habitat attributes influence short‐term settlement of animals during the critical post‐release period. 2. We demonstrate the application of resource selection modelling in an information theoretic framework to identify release‐site characteristics that will increase the likelihood of settlement for a fully aquatic benthic stream salamander, the Ozark hellbender (Cryptobranchus alleganiensis bishopi). We fit discrete choice models using data from 29 radio‐tagged hellbenders that were translocated to two sites in the North Fork of the White River (NFWR), Missouri (U.S.A.). We defined resource availability at two spatial scales (stream reach and home range) and quantified abiotic habitat attributes at 3181 salamander locations and 6329 random available locations collected between May 2008 and August 2009. 3. At both sites and spatial scales, a single model received substantially greater support (0.96–1.00 of total model weight) than all other models, and top‐ranked models were similar in form and predictive ability. At both spatial scales, selection was positively influenced by the presence of cobble‐boulder substratum relative to bedrock and finer substrata. We also noted a negative interactive effect between distance to the nearest substratum particle large enough to provide cover (i.e. at least one axis ≥15 cm in length) and an increase in either a direct or relative (i.e. pool, run, and riffle) measure of water velocity. 4. Collectively, salamanders released in our study selected resources indicative of long‐term benthic microhabitat stability. However, despite strong selection of cobble‐boulder substratum, 8% (282 of 3181) of captive‐reared hellbender locations occurred in bank crevices and root masses. Although several studies have reported the importance of near bed hydraulics in determining occurrence of stream macroinvertebrates, our findings are the first to indicate that spacing among cobble‐boulder substrata may be important for hellbenders. 5. To increase the likelihood of short‐term settlement of captive‐reared hellbenders in the wild, we recommend prioritising release sites where the average distance between cobble‐boulder particles within habitat patches is minimised. In general, average spacing among cobble and boulder substrata should be <1 m in habitat patches where mean benthic water velocity exceeds 0.1 m s?1, and <0.5 m where water velocity approaches 0.30 m s?1. Based on home range sizes of captive‐reared Ozark hellbenders, the collective extent of suitable cobble‐boulder habitat patches within release sites should approximate at least 10 m2 per salamander released.  相似文献   
8.
  总被引:5,自引:0,他引:5  
Dehydrins are a family of proteins that accumulate in response to abiotic stresses. Little is known about the biochemical functions of these proteins. It is known that the Arabidopsis dehydrin, ERD14, is activated by phosphorylation to bind calcium and other ions. To begin to categorize the Arabidopsis dehydrins into functional families, we determined whether representative members of the dehydrin sub families share the properties of ERD14. When phosphorylated in vitro with casein kinase II; recombinant COR47, and ERD10 (and ERD14) become activated to bind calcium. ERD14 exhibited the highest calcium-binding activity followed by ERD10 and COR47. These dehydrins, when isolated from cold-treated Arabidopsis plants were also shown to have phosphorylation-dependent, calcium-binding activity. RAB18 showed very little calcium binding activity, even though it was phosphorylated by casein kinase II. XERO2 was not phosphorylated with CKII and did not bind calcium. Competition studies suggest that other divalent cations may bind to the dehydrins COR47, ERD10, and ERD14. Utilizing matrix-assisted laser desorption ionization – time of flight mass spectroscopy (MALDI-TOF), we determined that the poly serine region located in all three calcium-binding family members (COR47, ERD10, and ERD14) is the most likely phosphorylation site responsible for the activation of calcium binding. These results are consistent with a distinct biochemical function for the acidic subclass of dehydrins (COR47, ERD10, and ERD14) as ion (calcium)-interacting proteins.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号