首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   1篇
  2018年   1篇
  2015年   1篇
  2014年   2篇
  2012年   1篇
  2010年   3篇
  2009年   3篇
  2008年   1篇
  2006年   1篇
  1985年   1篇
  1984年   1篇
  1974年   1篇
  1973年   1篇
  1970年   2篇
  1968年   2篇
  1966年   2篇
  1965年   1篇
  1959年   4篇
  1958年   3篇
  1956年   1篇
  1955年   1篇
  1954年   1篇
  1953年   1篇
  1952年   4篇
  1951年   2篇
排序方式: 共有41条查询结果,搜索用时 156 毫秒
1.
2.
The warm-season perennial switchgrass (Panicum virgatum) is a candidate bioenergy crop. To be successful, switchgrass production must be maintained on low-quality landscapes with minimal inputs while facing future climates that are expected to be more extreme and more variable. We propose that antecedent rainfall constrains how plants respond to drought, as well as subsequently recover from drought. To test this idea, we examined how six switchgrass genotypes responded to a 1-year severe drought and then recovered under normal rainfall in the following year. These plants had previously grown for 3 years under a range of dry to wet rainfall levels in a shallow-soil common garden with no fertilizer. Plants previously exposed to drought produced less biomass, and basal area after the severe drought was relieved compared to previously well-watered plants. In addition, there were legacy effects caused by plant size: plants that were larger pre-drought were more likely to survive the severe drought, and plants that were larger during the severe drought recovered more biomass, basal area, and tillers post-drought. Although genotypes differed somewhat in their responses, the size constraint was consistent across genotypes. These findings suggest that we can establish more drought-resilient switchgrass stands by, for example, planning for initial irrigation or planting during a wet year to allow plants to grow larger prior to experiencing drought. Additional studies are needed to understand whether these rainfall and size legacies persist or are transient.  相似文献   
3.
4.
5.
While it is generally recognized that noncontiguous (long‐distance) dispersal of small numbers of individuals is important for range expansion over large geographic areas, it is often assumed that colonization on more local scales proceeds by population expansion and diffusion dispersal (larger numbers of individuals colonizing adjacent sites). There are few empirical studies of dispersal modes at the front of expanding ranges, and very little information is available on dispersal dynamics at smaller geographic scales where we expect contiguous (diffusion) dispersal to be prevalent. We used highly polymorphic genetic markers to characterize dispersal modes at a local geographic scale for populations at the edge of the range of a newly invasive grass species (Brachypodium sylvaticum) that is undergoing rapid range expansion in the Pacific Northwest of North America. Comparisons of Bayesian clustering of populations, patterns of genetic diversity, and gametic disequilibrium indicate that new populations are colonized ahead of the invasion front by noncontiguous dispersal from source populations, with admixture occurring as populations age. This pattern of noncontiguous colonization was maintained even at a local scale. Absence of evidence for dispersal among adjacent pioneer sites at the edge of the expanding range of this species suggests that pioneer populations undergo an establishment phase during which they do not contribute emigrants for colonization of neighbouring sites. Our data indicate that dispersal modes change as the invasion matures: initial colonization processes appear to be dominated by noncontiguous dispersal from only a few sources, while contiguous dispersal may play a greater role once populations become established.  相似文献   
6.

Background  

The accuracy of texture analysis in clinical evaluation of magnetic resonance images depends considerably on imaging arrangements and various image quality parameters. In this paper, we study the effect of slice thickness on brain tissue texture analysis using a statistical approach and classification of T1-weighted images of clinically confirmed multiple sclerosis patients.  相似文献   
7.
Assessing the relative role of evolutionary processes on genetic diversity is critical for understanding species response to climatic change. However, many processes, independent of climate, can lead to the same genetic pattern. Because effective population size and gene flow are affected directly by abundance and dispersal, population ecology has the potential to profoundly influence patterns of genetic variation over microevolutionary timescales. Here, we use aDNA data and simulations to explore the influence of population ecology and Holocene climate change on genetic diversity of the Uinta ground squirrel (Spermophilus armatus). We examined phylochronology from three modern and two ancient populations spanning the climate transitions of the last 3000 years. Population genetic analyses based on summary statistics suggest that changes in genetic diversity and structure coincided with the Medieval Warm Period (MWP), c. 1000 years ago. Serial coalescent simulations allowed us to move beyond correlation with climate to statistically compare the likelihoods of alternative population histories given the observed data. The data best fit source–sink models that include large, mid‐elevation populations that exchange many migrants and small populations at the elevational extremes. While the MWP is likely to have reduced genetic diversity, our model‐testing approach revealed that MWP‐driven changes in genetic structure were not better supported for the range of models explored. Our results point to the importance of species ecology in understanding responses to climate, and showcase the use of ancient genetic data and simulation‐based inference for unraveling the relative roles of microevolutionary processes.  相似文献   
8.
9.
10.
Chagas disease is maintained in nature through the interchange of three cycles: the wild, peridomestic and domestic cycles. The wild cycle, which is enzootic, has existed for millions of years maintained between triatomines and wild mammals. Human infection was only detected in mummies from 4,000-9,000 years ago, before the discovery of the disease by Carlos Chagas in 1909. With the beginning of deforestation in the Americas, two-three centuries ago for the expansion of agriculture and livestock rearing, wild mammals, which had been the food source for triatomines, were removed and new food sources started to appear in peridomestic areas: chicken coops, corrals and pigsties. Some accidental human cases could also have occurred prior to the triatomines in peridomestic areas. Thus, triatomines progressively penetrated households and formed the domestic cycle of Chagas disease. A new epidemiological, economic and social problem has been created through the globalisation of Chagas disease, due to legal and illegal migration of individuals infected by Trypanosoma cruzi or presenting Chagas disease in its varied clinical forms, from endemic countries in Latin America to non-endemic countries in North America, Europe, Asia and Oceania, particularly to the United States of America and Spain. The main objective of the present paper was to present a general view of the interchanges between the wild, peridomestic and domestic cycles of the disease, the development of T. cruzi among triatomine, their domiciliation and control initiatives, the characteristics of the disease in countries in the Americas and the problem of migration to non-endemic countries.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号