首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   0篇
  40篇
  2018年   1篇
  2015年   3篇
  2014年   5篇
  2013年   3篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   4篇
  2000年   2篇
  1999年   3篇
  1992年   2篇
  1991年   1篇
  1987年   1篇
排序方式: 共有40条查询结果,搜索用时 15 毫秒
1.
2.
Hyperglycemia has been assumed to be responsible for oxidative stress in diabetes. In this respect, glucose autoxidation and advanced glycation end products (AGE) may play a causal role in the etiology of diabetic complications as e.g. atherosclerosis. There is now growing evidence that the oxidative modification of LDL plays a potential role in atherogenesis. Glucose derived oxidants have been shown to peroxidise LDL. In the present study, genistein, a compound derived from soy with a flavonoid chemical structure (4', 5, 7-trihydroxyisoflavone) has been evaluated for its ability to act as an antioxidant against the atherogenic modification of LDL by glucose autoxidation radical products. Daidzein, (4', 7-dihydroxyisoflavone) an other phytoestrogen of soy, was tested in parallel. Genistein — in contrast to daidzein — effectively prevented the glucose mediated LDL oxidation as measured by thiobarbituric acid-reactive substance formation (TBARS), alteration in electrophoretic mobility, lipid hydroperoxides and fluorescence quenching of tryptophan residues of the lipoprotein. In addition the potential of glucose-oxidized LDL to increase tissue factor (TF) synthesis in human endothelial cells (HUVEC) was completely inhibited when genistein was present during LDL oxidative modification by glucose. Both phytoestrogens did not influence the nonenzymatic protein glycation reaction as measured by the in vitro formation of glycated LDL. As the protective effect of genistein on LDL atherogenic modification was found at glucose/genistein molar ratios which may occur in vivo, our findings support the suggested beneficial action of a soy diet in preventing chronic vascular diseases and early atherogenic events.  相似文献   
3.
Lipotoxicity is a key mechanism thought to be responsible for the progression of nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH). Noninvasive diagnosis of NASH is a major unmet clinical need, and we hypothesized that PUFA metabolites, in particular arachidonic acid (AA)-derived eicosanoids, in plasma would differentiate patients with NAFL from those with NASH. Therefore, we aimed to assess the differences in the plasma eicosanoid lipidomic profile between patients with biopsy-proven NAFL versus NASH versus normal controls without nonalcoholic fatty liver disease (NAFLD; based on MRI fat fraction <5%). We carried out a cross-sectional analysis of a prospective nested case-control study including 10 patients with biopsy-proven NAFL, 9 patients with biopsy-proven NASH, and 10 non-NAFLD MRI-phenotyped normal controls. We quantitatively compared plasma eicosanoid and other PUFA metabolite levels between NAFL versus NASH versus normal controls. Utilizing a uniquely well-characterized cohort, we demonstrated that plasma eicosanoid and other PUFA metabolite profiling can differentiate between NAFL and NASH. The top candidate as a single biomarker for differentiating NAFL from NASH was 11,12-dihydroxy-eicosatrienoic acid (11,12-diHETrE) with an area under the receiver operating characteristic curve (AUROC) of 1. In addition, we also found a panel including 13,14-dihydro-15-keto prostaglandin D2 (dhk PGD2) and 20-carboxy arachidonic acid (20-COOH AA) that demonstrated an AUROC of 1. This proof-of-concept study provides early evidence that 11,12-diHETrE, dhk PGD2, and 20-COOH AA are the leading eicosanoid candidate biomarkers for the noninvasive diagnosis of NASH.  相似文献   
4.
Scavenger receptor class B type I (SR-BI) has been established as the primary mediator of the selective transfer of lipids from HDL to mammalian cells. In addition to its role in cholesterol metabolism, SR-BI has been shown to bind apoptotic cells and thus could in theory also function as a scavenger receptor. We now show that SR-BI binds oxidized LDL (OxLDL) with high affinity (K(d) of 4.0 +/- 0.5 microg/ml) and mediates internalization and degradation to an extent comparable to that of other scavenger receptors, when normalized to binding activity. The best competitors for OxLDL binding to SR-BI were oxidized lipoproteins, whereas native or acetylated lipoproteins only competed for a small fraction of OxLDL binding. Both the isolated lipids and the isolated protein from OxLDL bound with high affinity to SR-BI and showed partial reciprocal competition. Monoclonal antibody EO6, an antibody against oxidized phospholipids, and 1-palmitoyl-2-(5-oxovaleroyl) phosphatidylcholine (POVPC) both competed effectively with intact OxLDL and with isolated lipids from OxLDL for SR-BI binding.Together, these results demonstrate a potential function of SR-BI, in addition to its role in selective uptake of lipids, to mediate internalization of OxLDL by macrophages and suggest a central role for oxidized phospholipids in this process.  相似文献   
5.
6.
Applied Microbiology and Biotechnology - Against the outdated belief that inclusion bodies (IBs) in Escherichia coli are only inactive aggregates of misfolded protein, and thus should be avoided...  相似文献   
7.
8.
Historically considered to be simple membrane components serving as structural elements and energy storing entities, fatty acids are now increasingly recognized as potent signaling molecules involved in many metabolic processes. Quantitative determination of fatty acids and exploration of fatty acid profiles have become common place in lipid analysis. We present here a reliable and sensitive method for comprehensive analysis of free fatty acids and fatty acid composition of complex lipids in biological material. The separation and quantitation of fatty acids are achieved by capillary gas chromatography. The analytical method uses pentafluorobenzyl bromide derivatization and negative chemical ionization gas chromatography-mass spectrometry. The chromatographic procedure provides base line separation between saturated and unsaturated fatty acids of different chain lengths as well as between most positional isomers. Fatty acids are extracted in the presence of isotope-labeled internal standards for high quantitation accuracy. Mass spectrometer conditions are optimized for broad detection capacity and sensitivity capable of measuring trace amounts of fatty acids in complex biological samples. .  相似文献   
9.
We investigated the interaction of the N-formyl peptide receptor (NFPR) with G proteins in infected Sf9 insect cells expressing the recombinant NFPR. Recombinant receptor expression of up to 27 pmol/mg protein was achieved in these cells. The receptor was recognized by an antiserum raised against an NFPR carboxyl-terminal peptide, and displayed specific and saturable binding of the formyl peptide ligand fMet-Leu-[3H]Phe. Scatchard analysis of the binding data yielded a dissociation constant of approximately 62 nM, a binding affinity of 60- to 120-fold lower than that of the high affinity sites in neutrophils and in transfected mammalian cell lines expressing the NFPR. That this low binding affinity was due to a lack of receptor coupling to G protein was suggested by the failure of guanine nucleotides to regulate receptor affinity and by the lack of formyl peptide-stimulated GTPase activity in these cells. Furthermore, immunoblotting with an anti-G(i) antibody and ADP-ribosylation experiments indicated that the approximately 40-kDa G(i) alpha subunit, which couples to the NFPR in neutrophils, is not present in Sf9 cell membranes. Thus, the current study provides for the first time evidence that a major G protein is absent in the Sf9 insect cells. Potential applications of the Sf9 system for in vitro reconstitution of the NFPR-G protein interaction are discussed.  相似文献   
10.
We investigated the requirement for N-formyl peptide receptor-mediated transmembrane signalling in transfected mouse fibroblasts that express the receptor. Stably transfected cells displayed specific binding for N-formyl-Met-Leu-[3H]Phe with a dissociation constant of 3 nM. The cells responded to ligand stimulation with mobilization of calcium from intracellular stores. Calcium mobilization was ligand dose-dependent (EC50 = 3 nM fMet-Leu-Phe) and could be inhibited by pertussis toxin treatment. These results provide the first demonstration that expression of the single-chain N-formyl peptide receptor in mouse fibroblasts is sufficient for mediating ligand-induced early transmembrane signalling events, which do not appear to require other neutrophil-specific cellular components.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号