首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   204篇
  免费   14篇
  2015年   3篇
  2014年   6篇
  2013年   7篇
  2012年   12篇
  2011年   5篇
  2010年   15篇
  2009年   6篇
  2008年   9篇
  2007年   8篇
  2006年   6篇
  2005年   6篇
  2004年   3篇
  2003年   4篇
  2002年   5篇
  2001年   6篇
  1998年   4篇
  1997年   3篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1991年   2篇
  1990年   4篇
  1989年   5篇
  1988年   3篇
  1986年   5篇
  1985年   2篇
  1984年   3篇
  1983年   4篇
  1982年   2篇
  1981年   4篇
  1980年   4篇
  1979年   2篇
  1978年   3篇
  1977年   2篇
  1973年   6篇
  1972年   2篇
  1971年   3篇
  1959年   2篇
  1958年   2篇
  1957年   2篇
  1956年   3篇
  1954年   4篇
  1952年   2篇
  1951年   4篇
  1950年   6篇
  1949年   2篇
  1948年   1篇
  1946年   1篇
  1944年   1篇
  1927年   1篇
排序方式: 共有218条查询结果,搜索用时 187 毫秒
1.
2.
Summary The localization and orientation of cytoskeletal elements in developing cotton fibres were studied by the indirect immunofluorescence and the dry cleaving technique. Microtubules are transversely arranged to the cell axis, most probably in a flat helix, in the cortex of expanding fibres. Since the innermost deposited cellulose microfibrils always show primarily the same orientation it is postulated that the microtubules control the transverse deposition of the cellulose fibrils. Little further cell expansion takes place during secondary wall formation and the microfibril pattern corresponds to that of the cortical microtubules,e.g., in the steepness of their helicoidal turns. Microtubules with a length of 7–20 m were observed, probably they are longer. The importance of microtubule length on microfibril deposition is discussed. The density of microtubule packing is in the range of 8–14 m-1 as in other comparable cell types. In contrast to the microtubules, actin filaments are most likely longitudinally oriented during different phases of fibre development. The dry cleaving technique reveals numerous coated pits in the plasma membrane which are not crossed by microtubules. They seem to be linked to the latter by filamentous structures.  相似文献   
3.
SUMMARY. 1. The overlying water of intact sediment cores was constantly stirred with an impeller at a rate sufficient to mix turbulently the water column and maintain the diffusive boundary layer at a determined thickness. The system allowed standardization of water circulation in laboratory sediment core experiments.
2. Both oxygen concentration and oxygen penetration depth in the sediments decreased, the former by 70% and the latter from 4.2 mm to 2.0 mm, when the overlying water was not stirred for 24 h, as measured with oxygen microelectrodes in a lake sediment core.
3. Oxygen profiles measured in sediment cores in the laboratory were similar to those measured in situ when the overlying water was stirred with an impeller at such a rate that a similar thickness of the diffusive boundary layer at the sediment-water interface developed in the laboratory as that in situ.
4. Sediment oxygen consumption was calculated from: (1) measured oxygen profiles in the diffusive boundary layer and the molecular diffusion coefficient for oxygen in water; (2) the measured oxygen decrease in the top of the sediments and the estimated diffusion coefficient in the sediment; and (3) by oxygen differences in the overlying water after incubation of sediment cores.  相似文献   
4.
5.
Living Vessel Elements in the Late Metaxylem of Sheathed Maize Roots   总被引:6,自引:0,他引:6  
The two types of nodal roots of field-grown maize, sheathedand bare, were found to have such different water conductivitiesthat an investigation of the anatomy of their large metaxylemvessels was made. While the vessels of the bare roots were openfor scores of centimetres, those of the sheathed roots werefound to be not vessels but developing vessel elements, withcross walls at 1 mm intervals, and protoplasts. The cross wallsbetween the elements had several unique histochemical properties.Previous investigators have often failed to find the cross wallsbecause they are very easily dislodged during the usual methodsof tissue preparation. They are best identified by microdissectionof fresh xylem. The living elements persist in the late metaxylemup to 20 – 30 cm from the tip. As the roots become longerthan this both the cross walls and the soil sheaths disappearand there is a transition to a bare root with open vessels inthe proximal region. The soil sheath persists a little longerthan the cross walls. The two types are thus stages in a developmentalsequence through which all nodal roots pass. A fundamental differencebetween the two types is in their water status, since the estimatedconductive capacity of a bare root is about 100 times greaterthan that of a sheathed root. These observations point to theneed for a reassessment of the published work on transport ofions into the xylem of grass roots through a reinvestigationof the ‘maturity’ of their xylem vessels. Grass roots, dimorphic roots, ion secretion to xylem, soil sheaths, xylem vessels, xylem differentiation, water conduction, Zea mays L  相似文献   
6.
The cell wall of Cobaea scandens seed hairs developed in a characteristic sequence, with the deposition of a cellulose thread onto a pectic swelling layer was the final event. The cellulose thread was intracellularly accompanied by a band of 10–18 microtubules. During the formation of the swelling layer the microtubules were homogeneously distributed; they ran circumferentially normal to the cell axis. When cellulose-thread formation started, the microtubules became arranged in a helical band. The density of the microtubules varied during the different phases of development. The highest density was observed before cellulosethread formation and ranged from 6–15 m·m-2. The length of the microtubules, 20–30 m, was determined by direct measurements, as well as estimated from the total microtubular length in a given area and the counted free ends. With the indirect immunofluorescence technique the microtubules of the band stained inhomogeneously. Those which were located at the edges of the band fluoresced more intensely than those of the central part. Attempts to visualize actin filaments in the hair cells with rhodaminyl-conjugated phalloidin resulted in a homogeneous staining of the area of the microtubular band, indicating that actin filaments may be present in this region. Though, in thin sections and dry-cleaved cells, filamentous structures were observed between the microtubules, caution is expressed that the observed fluorescence was, indeed, due to actin filaments. The role of the filamentous structures is discussed with respect to formation and maintenance of the microtubular band. Microtubules apparently did not cross coated pits which were visualized in the plasma membrane through the dry-cleaving technique.Abbreviations IFT indirect immunofluorescence technique - RP rhodaminyl-conjugated phalloidin - SEM scanning electron microscopy  相似文献   
7.
DURING each step of peptide chain elongation the ribosome shifts up one triplet along the messenger RNA with concomitant movement of the peptidyl-transfer RNA from the donor to the acceptor site. This process, commonly known as translocation, is triggered by a supernatant protein, factor G, which in association with the ribosome cleaves GTP into GDP and inorganic phosphate1,2 and it has been argued that the energy liberated in this reaction is used “to carry the complex one triplet forward”3.  相似文献   
8.
H. Quader  H. Fast 《Protoplasma》1990,157(1-3):216-224
Summary The anastomosing ER system of epidermal cells of onion bulb scales is composed of three modifications: lamellar and tubular elements, located in the cell periphery, and long tubular stands located deeper in the cytoplasm. Cytoplasmic acidification of epidermal cells by loading with weak organic acids like acetic or propionic acid causes the decay of the lamellar elements and the disappearance of long tubular strands. Organelle movement is also inhibited. The effects depend on the pH of the incubation medium and on the administered acid concentration, and are characterized by a distinct lag phase of about 7 min. The induced ER changes are transient with adaptation starting after about 50min. Buffer components alone have little influence on the cellular ER organization within a pH-range of 4.0–8.0. However, the pH of the medium strongly affects the time course of the effects as well as recovery after omitting the administered acid. Both modulation and recovery occur more rapidly at neutral or slightly alkaline pH. Actin filaments, which play a major role in ER organization and organelle movement, are not affected by cytosolic acidification.Dedicated to the memory of Professor Oswald Kiermayer  相似文献   
9.
Studied with the fluorochrome 3,3-dihexyloxacarbocyanine iodide [(DIOC6(3)], the dynamic system of the endoplasmic reticulum (ER) in epidermal cells of onion bulb scales consists of long, tubular strands moving together with organelles in the deeper cytoplasm, and of a less mobile network composed of tubular and lamellar elements at the cell periphery. Treatment with the sulfhydryl-reagent N-ethylmaleimide (NEM) inhibited organelle and ER movement, and caused the fusion of ER-tubules into flat sheets. Fixed, long, tubular ER strands were formed by lowering the cytosolic pH of NEM-treated cells. Both these observations indicate the involvement of myosin in the dynamics of organelles and ER. Using a monoclonal antibody against murine skeletal muscle myosin (known to cross-react with plant myosin; Tang et al. 1989, J. Cell Sci. 92: 569–574), myosin was identified by immunofluorescence microscopy. Mapping the distribution of myosin, actin filaments, ER, and organelles in different phases of recovery after centrifugation of epidermal cells, co-localization of myosin with ER and organelles but not with actin filaments was observed, supporting the hypothesis that a membrane bound motor protein exists in onion epidermal cells, which translocates organelles and the endoplasmic reticulum along actin filaments.  相似文献   
10.
The rhodopsin system of the squid   总被引:6,自引:19,他引:6  
Squid rhodopsin (λmax 493 mµ)—like vertebrate rhodopsins—contains a retinene chromophore linked to a protein, opsin. Light transforms rhodopsin to lumi- and metarhodopsin. However, whereas vertebrate metarhodopsin at physiological temperatures decomposes into retinene and opsin, squid metarhodopsin is stable. Light also converts squid metarhodopsin to rhodopsin. Rhodopsin is therefore regenerated from metarhodopsin in the light. Irradiation of rhodopsin or metarhodopsin produces a steady state by promoting the reactions, See PDF for Equation Squid rhodopsin contains neo-b (11-cis) retinene; metarhodopsin all-trans retinene. The interconversion of rhodopsin and metarhodopsin involves only the stereoisomerization of their chromophores. Squid metarhodopsin is a pH indicator, red (λmax 500 mµ) near neutrality, yellow (λmax 380 mµ) in alkaline solution. The two forms—acid and alkaline metarhodopsin—are interconverted according to the equation, Alkaline metarhodopsin + H+ acid metarhodopsin, with pK 7.7. In both forms, retinene is attached to opsin at the same site as in rhodopsin. However, metarhodopsin decomposes more readily than rhodopsin into retinene and opsin. The opsins apparently fit the shape of the neo-b chromophore. When light isomerizes the chromophore to the all-trans configuration, squid opsin accepts the all-trans chromophore, while vertebrate opsins do not and hence release all-trans retinene. Light triggers vision by affecting directly the shape of the retinene chromophore. This changes its relationship with opsin, so initiating a train of chemical reactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号