首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   1篇
  国内免费   1篇
  2023年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2015年   2篇
  2014年   2篇
  2012年   2篇
  2007年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
2.
目的探讨骨髓间充质干细胞(BMSCs)移植对急性肝功能衰竭(ALF)大鼠肝组织中miRNA-155和TNF-α表达的影响,以及与BMSCs疗效间的关系。方法将SD大鼠随机分为健康对照组、ALF组、BMSCs治疗组和BMSCs预防组,其中ALF组予以900 mg/kg D-GalN+10μg/kg脂多糖腹腔注射建立模型;BMSCs治疗组在900 mg/kg D-GalN+10μg/kg脂多糖腹腔注射后2 h,予以尾静脉注射BMSCs 5.0×10^6;BMSCs预防组在900 mg/kg D-GalN+10μg/kg脂多糖腹腔注射前予以尾静脉注射BMSCs 5.0×10^6;健康对照组予以0.9﹪氯化钠溶液1 ml腹腔注射。给药7 h后每组处死大鼠,检测大鼠血清ALT和AST,ELISA法检测TNF-α水平,实时定量PCR检测肝组织miRNA-155、TNF-αmRNA。各组间肝功指标差异采用方差分析,同时观察每组大鼠的24 h生存率,并用卡方检验比较各组生存率的差异。结果 D-GalN/脂多糖诱导7 h后,与ALF组相比,BMSCs预防和BMSCs治疗组大鼠ALT、AST、TNF-α水平均有所降低(P〈0.01);同时两组肝组织TNF-αmRNA和miRNA-155表达水平均有下调(P〈0.01);但两组间相比较差异无统计学意义。ALF组大鼠肝组织miRNA-155上调和TNF-αmRNA诱导呈正相关(r=0.734,P=0.001)。BMSCs预防组和BMSCs治疗组miRNA-155和TNF-αmRNA的部分逆转亦呈正相关(r值分别为0.687和0.590,P值分别为0.004和0.006)。给药后24 h,健康对照组、ALF组、BMSCs治疗组和BMSCs预防组大鼠死亡率组间比较差异有统计学意义(c2=19.078,P〈0.01)。结论在BMSCs干预大鼠ALF发病过程中,可以部分逆转上调的肝组织miRNA-155和TNF-α,且存在协同性,提示BMSCs治疗ALF可能通过对肝组织miRNA-155和TNF-α的调控发生作用。  相似文献   
3.
The differentiation of monocytes into macrophages and dendritic cells involves mechanisms for activation of the innate immune system in response to inflammatory stimuli, such as pathogen infection and environmental cues. Epigenetic reprogramming is thought to play an important role during monocyte differentiation. Complementary to cell surface markers, the characterization of monocytic cell lineages by mass spectrometry based protein/histone expression profiling opens a new avenue for studying immune cell differentiation. Here, we report the application of mass spectrometry and bioinformatics to identify changes in human monocytes during their differentiation into macrophages and dendritic cells. Our data show that linker histone H1 proteins are significantly down-regulated during monocyte differentiation. Although highly enriched H3K9-methyl/S10-phos/K14-acetyl tri-modification forms of histone H3 were identified in monocytes and macrophages, they were dramatically reduced in dendritic cells. In contrast, histone H4 K16 acetylation was found to be markedly higher in dendritic cells than in monocytes and macrophages. We also found that global hyperacetylation generated by the nonspecific histone deacetylase HDAC inhibitor Apicidin induces monocyte differentiation. Together, our data suggest that specific regulation of inter- and intra-histone modifications including H3 K9 methylation, H3 S10 phosphorylation, H3 K14 acetylation, and H4 K16 acetylation must occur in concert with chromatin remodeling by linker histones for cell cycle progression and differentiation of human myeloid cells into macrophages and dendritic cells.The linker histone H1s “beads-on-a-string” structure aids chromatin folding into highly compacted 30 nm chromatin fibers (1). Previous studies demonstrated that histone H1s are differentially expressed and incorporated into chromatin during embryonic stem cell differentiation and reprogramming to pluripotency (2). More than being accumulated after differentiation, the three histone H1 isoforms, H1.3, H1.4, and H1.5, are required for embryonic stem cell differentiation as demonstrated by in vivo H1.3/H1.4/H1.5 triple null experiments (3). Histone H1 null cells exhibit altered nucleosome architecture (4) which may cause epigenetic reprogramming (2), specific changes in gene regulation including repression of pluripotency gene Oct4 expression (3, 5), and cell growth (6, 7). In human blood or bone marrow, hematopoietic stem cells give rise to two major pluripotent progenitor cell lineages, myeloid and lymphoid progenitors, from which are derived mature blood cells including erythrocytes, megakaryocytes, and cells of the myeloid and lymphoid lineages. However, epigenetic regulation or reprogramming in this complex differentiation system has not yet been fully understood. As a follow up to our proteomics studies on epigenetic networks in U937 cell differentiation (8), we have performed proteomics studies on primary human monocyte differentiation. In this report, using proteomics and bioinformatics tools in lieu of microarray analysis of gene expression, we describe the presence of unique protein expression profiles, specifically the linker histones, in monocyte differentiation into macrophages and dendritic cells.Differentiation of monocytes from primary leukemia cell lines or from human peripheral blood mononuclear cells into macrophages or macrophage-like cells using different differentiating reagents has been frequently used as a mimic model for understanding the process of innate and adaptive immune responses to inflammatory stimuli, viral infection, and environmental cues. Either phorbol myristate acetate (PMA)1 or granulocyte-macrophage colony-stimulating factor (GMCSF) has normally been used for differentiation of monocytes, though the former is generally for differentiation of primary monocytic cell lines, while the latter for differentiation of human blood monocytes (911). In our experiments, CD14+ monocytes were treated with PMA, PMA + ionomycin, GMCSF, or GMCSF + IL4. After treatment, monocyte differentiation into macrophages or dendritic cells was monitored by mass spectrometry and bioinformatics analyses. We report here that monocytic cell lineages can be distinguished based on protein expression profiles, specifically, histone H1.4 and H1.5 expression patterns. We identified H3K9-methyl/S10-phos/K14-acetyl tri-modification forms in the monocyte and macrophages but not in dendritic cells. In addition, histone H4 K16 acetylation was low in monocytes and macrophages but significantly higher in dendritic cells. Our findings suggest a switch from H3 tri-modification and linker histone expression to histone H4 K16 acetylation occurs during the monocyte-to-dendritic cell transition.  相似文献   
4.
鸡的胃肠道具有复杂的微生物菌群,该微生物菌群与宿主的肠道和整体健康密切相关,为了全面揭示鸡肠道微生物菌群的组成及其功能,本文对鸡肠道微生物菌群的建立发育、各肠段群落的分布及其生理学意义进行综述,从而为鸡肠道功能菌株的分离及有效利用,合理调控微生物菌群-宿主相互作用,提高饲料转化率和改善肠道健康提供理论依据。  相似文献   
5.
6.
Chen  Zhenzhen  Hu  Quan  Xie  Qingfeng  Wu  Shamin  Pang  Qiongyi  Liu  Meixia  Zhao  Yun  Tu  Fengxia  Liu  Chan  Chen  Xiang 《Neurochemical research》2019,44(4):930-946

Exercise has been regarded as an effective rehabilitation strategy to facilitate motor and cognitive functional recovery after stroke, even though the complex effects associated with exercise-induced repair of cerebral ischemic injury are not fully elucidated. The enhancement of angiogenesis and neurogenesis, and the improvement of synaptic plasticity following moderate exercise are conducive to functional recovery after ischemic damage. Our previous studies have confirmed the angiogenesis and neurogenesis through the caveolin-1/VEGF pathway in MCAO rats. As an essential neurotrophic factor, BDNF has multiple effects on ischemic injury. In this study, we attempted to determine an additional mechanism of treadmill exercise-mediated motor and cognitive functional recovery through the caveolin-1/VEGF pathway associated with BDNF in the ischemic penumbra of MCAO mice. We found that mice exposed to treadmill exercise after the MCAO operation showed a significant up-regulation in expression of caveolin-1, VEGF, BDNF, synapsin I and CYFIP1 proteins, numbers of cells positive for BrdU/CD34, BDNF, BrdU/NeuN, BrdU/Synapsin I and CYFIP1 expression were increased, which support the reduction in neurological deficit and infarction volume, as well as improved synaptic morphology and spatial learning abilities, compared with the non-exercise mice. However, the caveolin-1 inhibitor, daidzein, resulted in increase in neurological deficit and infarction volume. The selective VEGFR2 inhibitor, PD173074, significantly induced larger infarction volume and neurological injury, and decreased the expression of BDNF in the ischemic penumbra. These findings indicate that exercise improves angiogenesis, neurogenesis and synaptic plasticity to ameliorate motor and cognitive impairment after stroke partially through the caveolin-1/VEGF pathway, which is associated with the coregulator factor, BDNF.

  相似文献   
7.
Following the 2006 outbreaks of the highly pathogenic porcine reproductive and respiratory syndrome, the causative agent was identified as the highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV). To investigate whether the HP-PRRSV variant continues circulating and accelerating evolution, we sequenced and analyzed the complete genome of the identified HP-PRRSV field strain SD16. The sequence data indicate that the HP-PRRSV variant continues to prevail and accelerate evolution, especially in the nonstructural protein.  相似文献   
8.
Xu F  Zhang Q  Zhang K  Xie W  Grunstein M 《Molecular cell》2007,27(6):890-900
At telomeric heterochromatin in yeast, the Sir protein complex spreads from Rap1 sites to silence adjacent genes. This cascade is believed to occur when Sir2, an NAD(+)-dependent enzyme, deacetylates histone H3 and H4 N termini, in particular histone H4 K16, enabling more Sir protein binding. Lysine 56 of histone H3 is located at the entry-exit points of the DNA superhelix surrounding the nucleosome, where it may control DNA compaction. We have found that K56 substitutions disrupt silencing severely without decreasing Sir protein binding at the telomere. Our in vitro and in vivo data indicate that Sir2 deacetylates K56 directly in telomeric heterochromatin to compact chromatin and prevent access to RNA polymerase and ectopic bacterial dam methylase. Since the spread of Sir proteins is necessary but not sufficient for silencing, we propose that silencing occurs when Sir2 deacetylates H3 K56 to close the nucleosomal entry-exit gates, enabling compaction of heterochromatin.  相似文献   
9.
PPARγ2 is expressed almost exclusively in adipose tissue and plays a central role in adipogenesis. Despite intensive studies over the last 2 decades, the mechanism regulating the expression of the Pparg2 gene, especially the role of cis-regulatory elements, is still not completely understood. Here, we report a comprehensive investigation of the enhancer elements within the murine Pparg2 gene. Utilizing the combined techniques of sequence conservation analysis and chromatin marker examination, we identified a potent enhancer element that augmented the expression of a reporter gene under the control of the Pparg2 promoter by 20-fold. This enhancer element was first identified as highly conserved non-coding sequence 10 (CNS10) and was later shown to be enriched with the enhancer marker H3 K27 acetylation. Further studies identified a binding site for p300 as the essential enhancer element in CNS10. Moreover, p300 physically binds to CNS10 and is required for the enhancer activity of CNS10. The depletion of p300 by siRNA resulted in significantly impaired activation of Pparg2 at the early stages of 3T3-L1 adipogenesis. In summary, our study identified a novel enhancer element on the murine Pparg2 gene and suggested a novel mechanism for the regulation of Pparg2 expression by p300 in 3T3-L1 adipogenesis.  相似文献   
10.
三基序蛋白家族(tripartite motif,TRIM)是参与不同细胞功能的一大类具有E3泛素连接酶活性的蛋白质,在宿主抗病毒免疫应答中发挥着重要的作用。TRIM家族蛋白可通过提高宿主固有免疫应答或直接降解病毒蛋白发挥抗病毒活性;部分病毒有时也可利用TRIM家族蛋白调控细胞因子表达促进自身感染。本文综述了TRIM家族蛋白在病毒复制中的作用及相关机制的研究进展,为研究病毒感染机制提供参考。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号