首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22320篇
  免费   1931篇
  国内免费   2387篇
  26638篇
  2024年   70篇
  2023年   334篇
  2022年   774篇
  2021年   1266篇
  2020年   836篇
  2019年   1077篇
  2018年   1001篇
  2017年   798篇
  2016年   1104篇
  2015年   1455篇
  2014年   1797篇
  2013年   1906篇
  2012年   2148篇
  2011年   1964篇
  2010年   1212篇
  2009年   1103篇
  2008年   1224篇
  2007年   1011篇
  2006年   852篇
  2005年   730篇
  2004年   654篇
  2003年   570篇
  2002年   436篇
  2001年   335篇
  2000年   294篇
  1999年   292篇
  1998年   199篇
  1997年   160篇
  1996年   151篇
  1995年   128篇
  1994年   119篇
  1993年   96篇
  1992年   115篇
  1991年   109篇
  1990年   62篇
  1989年   61篇
  1988年   45篇
  1987年   36篇
  1986年   24篇
  1985年   29篇
  1984年   24篇
  1983年   16篇
  1982年   9篇
  1981年   4篇
  1980年   3篇
  1979年   3篇
  1950年   2篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
1.
The molecular mechanism that controls the proliferation and differentiation of prostate epithelial cells is currently unknown. We previously identified a 44-kDa protein (p44/wdr77) as an androgen receptor-interacting protein that regulates a set of androgen receptor target genes in prostate epithelial cells and prostate cancer. In this study, we found that p44 localizes in the cytoplasm of prostate epithelial cells at the early stage of prostate development when cells are proliferating, and its nuclear translocation is associated with cellular and functional differentiation in adult prostate tissue. We further demonstrated that cytoplasmic p44 protein is essential for proliferation of prostate epithelial cells, whereas nuclear p44 is required for cell differentiation and prostate- specific protein secretion. These studies suggest a novel mechanism by which proliferation and differentiation of prostate epithelial cells are controlled by p44’s location in the cell.  相似文献   
2.
3.
An explicit high-order, symplectic, finite-difference time-domain (SFDTD) scheme is applied to a bioelectromagnetic simulation using a simple model of a pregnant woman and her fetus. Compared to the traditional FDTD scheme, this scheme maintains the inherent nature of the Hamilton system and ensures energy conservation numerically and a high precision. The SFDTD scheme is used to predict the specific absorption rate (SAR) for a simple model of a pregnant female woman (month 9) using radio frequency (RF) fields from 1.5 T and 3 T MRI systems (operating at approximately 64 and 128 MHz, respectively). The results suggest that by using a plasma protective layer under the 1.5 T MRI system, the SAR values for the pregnant woman and her fetus are significantly reduced. Additionally, for a 90 degree plasma protective layer, the SAR values are approximately equal to the 120 degree layer and the 180 degree layer, and it is reduced relative to the 60 degree layer. This proves that using a 90 degree plasma protective layer is the most effective and economical angle to use.  相似文献   
4.
Metabolic pathway analysis, one of the most important fields in biochemistry, is pivotal to understanding the maintenance and modulation of the functions of an organism. Good comprehension of metabolic pathways is critical to understanding the mechanisms of some fundamental biological processes. Given a small molecule or an enzyme, how may one identify the metabolic pathways in which it may participate? Answering such a question is a first important step in understanding a metabolic pathway system. By utilizing the information provided by chemical-chemical interactions, chemical-protein interactions, and protein-protein interactions, a novel method was proposed by which to allocate small molecules and enzymes to 11 major classes of metabolic pathways. A benchmark dataset consisting of 3,348 small molecules and 654 enzymes of yeast was constructed to test the method. It was observed that the first order prediction accuracy evaluated by the jackknife test was 79.56% in identifying the small molecules and enzymes in a benchmark dataset. Our method may become a useful vehicle in predicting the metabolic pathways of small molecules and enzymes, providing a basis for some further analysis of the pathway systems.  相似文献   
5.
6.
7.
Two mutants that grew faster than the wild-type (WT) strain under high light conditions were isolated from Synechocystis sp. strain PCC 6803 transformed with a transposon-bearing library. Both mutants had a tag in ssl1690 encoding NdhO. Deletion of ndhO increased the activity of NADPH dehydrogenase (NDH-1)-dependent cyclic electron transport around photosystem I (NDH-CET), while overexpression decreased the activity. Although deletion and overexpression of ndhO did not have significant effects on the amount of other subunits such as NdhH, NdhI, NdhK, and NdhM in the cells, the amount of these subunits in the medium size NDH-1 (NDH-1M) complex was higher in the ndhO-deletion mutant and much lower in the overexpression strain than in the WT. NdhO strongly interacts with NdhI and NdhK but not with other subunits. NdhI interacts with NdhK and the interaction was blocked by NdhO. The blocking may destabilize the NDH-1M complex and repress the NDH-CET activity. When cells were transferred from growth light to high light, the amounts of NdhI and NdhK increased without significant change in the amount of NdhO, thus decreasing the relative amount of NdhO. This might have decreased the blocking, thereby stabilizing the NDH-1M complex and increasing the NDH-CET activity under high light conditions.  相似文献   
8.
Oat leaf base: tissue with an efficient regeneration capacity   总被引:1,自引:1,他引:0  
Summary An efficient short term regeneration system using seedling derived oat (Avena sativa) leaf tissue has been developed. Callus derived from the leaf base showed a higher response of plant regeneration than callus initiated from mesocotyls and more mature parts of the leaves. A correlation between the nuclear DNA content of the donor material, as analysed with flow cytometry, and its ability to form callus was observed. Somatic embryogenesis was histologically recognised from callus derived from tissue close to the apical meristem. Plant regeneration media with various concentrations of auxin were tested. Callus from three different cultivars had a similar regeneration potential with an optimal regeneration frequency of 60%. About 2 months after inoculation regenerated plantlets could be moved to a greenhouse for cultivation.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - DAPI 6-diamidino-2-phenylindole - IAA indole-3-acetic acid - KT kinetin - MS Murashige and Skoog's medium - NAA naphthalene acetic acid  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号