首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87篇
  免费   1篇
  国内免费   1篇
  2017年   1篇
  2016年   1篇
  2015年   4篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2010年   4篇
  2009年   3篇
  2008年   2篇
  2007年   1篇
  2006年   7篇
  2005年   2篇
  2004年   1篇
  2003年   4篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1995年   2篇
  1992年   1篇
  1990年   2篇
  1988年   1篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1978年   1篇
  1975年   1篇
  1968年   2篇
  1954年   2篇
  1952年   10篇
  1951年   11篇
  1950年   8篇
  1938年   1篇
  1936年   1篇
排序方式: 共有89条查询结果,搜索用时 15 毫秒
1.
In this paper the recent population changes of the Wild Boar in different European countries is analysed through the study of hunting statistics. A simultaneous increase in numbers is observed throughout the whole area during the period 1965–1975. From 1975 onwards the population stabilizes itself apart from in peripheral areas like Finland. Potentially favourable factors which play a part in this process are discussed and certain reproductive and dispersive characteristics which favour its invasive behaviour are discussed.  相似文献   
2.
3.
Sulphasalazine is known to be effective as a second line agent in the treatment of rheumatoid arthritis. The two chemical constituents of sulphasalazine (sulphapyridine and 5-aminosalicylic acid) were assessed separately in the treatment of rheumatoid arthritis. Over 24 weeks sulphapyridine showed a pronounced second line effect comparable with sulphasalazine and with a similar toxicity profile, whereas 5-aminosalicylic acid showed only a weak first line effect. Thus sulphapyridine appears to be the active moiety responsible for the second line effect of sulphasalazine in rheumatoid arthritis. The efficacy of the antibacterial component of sulphasalazine yet again permits speculation about the role of a bacterial pathogen in the aetiopathogenesis of rheumatoid disease.  相似文献   
4.
Uncontrolled studies have suggested that sulphasalazine may be an effective second line agent in rheumatoid arthritis. Sulphasalazine was therefore compared with placebo and intramuscular sodium aurothiomalate in 90 patients with active rheumatoid arthritis. After six months'' treatment both sulphasalazine and sodium aurothiomalate had produced significant clinical and laboratory benefit, whereas placebo had produced no significant change in any variable. Thirteen patients stopped taking the placebo because of lack of effect whereas only two patients stopped taking sulphasalazine and one sodium aurothiomalate for this reason. The major toxicity encountered in the group treated with sulphasalazine was nausea or vomiting, or both; this may be related to slow acetylator phenotype. Sulphasalazine appears to be an effective second line agent, and further pharmacokinetic studies might prove useful in diminishing gastrointestinal side effects.  相似文献   
5.
6.
Sedentary keratinocytes at the edge of a skin wound migrate into the wound, guided by the generation of an endogenous electric field (EF) generated by the collapse of the transepithelial potential. The center of the wound quickly becomes more negative than the surrounding tissue and remains the cathode of the endogenous EF until the wound is completely re‐epithelialized. This endogenous guidance cue can be studied in vitro. When placed in a direct current (DC) EF of physiological strength, 100 V/m, keratinocytes migrate directionally toward the cathode in a process known as galvanotaxis. Although a number of membrane‐bound (e.g., epidermal growth factor receptor (EGFR), integrins) and cytosolic proteins (cAMP, ERK, PI3K) are known to play a role in the downstream signaling mechanisms underpinning galvanotaxis, the initial sensing mechanism for this response is not understood. To investigate the EF sensor, we studied the migration of keratinocytes in a DC EF of 100 V/m, alternating current (AC) EFs of 40 V/m at either 1.6 or 160 Hz, and combinations of DC and AC EFs. In the AC EFs alone, keratinocytes migrated randomly. The 1.6 Hz AC EF combined with the DC EF suppressed the direction of migration but had no effect on speed. In contrast, the 160 Hz AC EF combined with the DC EF did not affect the direction of migration but increased the migration speed compared to the DC EF alone. These results can be understood in terms of an electromechanical transduction model, but not an electrodiffusion/osmosis or a voltage‐gated channel model. Bioelectromagnetics 34:85–94, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
7.
Understanding the mechanisms that regulate cell migration is important for devising novel therapies to control metastasis or enhance wound healing. Previously, we demonstrated that beta2-adrenergic receptor (beta2-AR) activation in keratinocytes inhibited their migration by decreasing the phosphorylation of a critical promigratory signaling component, the extracellular signal-related kinase (ERK). Here we demonstrate that beta2-AR-induced inhibition of migration is mediated by the activation of the serine/threonine phosphatase PP2A. Pretreating human keratinocytes with the PP2A inhibitor, okadaic acid, prevented the beta2-AR-induced inhibition of migration, either as isolated cells or as a confluent sheet of cells repairing an in vitro "wound" and also prevented the beta2-AR-induced reduction in ERK phosphorylation. Similar results were obtained with human corneal epithelial cells. In keratinocytes, immunoprecipitation studies revealed that beta2-AR activation resulted in the rapid association of beta2-AR with PP2A as well as a 37% increase in association of PP2A with ERK2. Finally, beta2-AR activation resulted in a rapid and transient 2-fold increase in PP2A activity. Thus, we provide the first evidence that beta2-AR activation in keratinocytes modulates migration via a novel pathway utilizing PP2A to alter the promigratory signaling cascade. Exploiting this pathway may result in novel therapeutic approaches for control of epithelial cell migration.  相似文献   
8.
Angiogenesis is an essential process during tissue regeneration; however, the amount of angiogenesis directly correlates with the level of wound scarring. Angiogenesis is lower in scar‐free foetal wounds while angiogenesis is raised and abnormal in pathophysiological scarring such as hypertrophic scars and keloids. Delineating the mechanisms that modulate angiogenesis and could reduce scarring would be clinically useful. Beta‐adrenoceptors (β‐AR) are G protein‐coupled receptors (GPCRs) expressed on all skin cell‐types. They play a role in wound repair but their specific role in angiogenesis is unknown. In this study, a range of in vitro assays (single cell migration, scratch wound healing, ELISAs for angiogenic growth factors and tubule formation) were performed with human dermal microvascular endothelial cells (HDMEC) to investigate and dissect mechanisms underpinning β‐AR‐mediated modulation of angiogenesis in chick chorioallantoic membranes (CAM) and murine excisional skin wounds. β‐AR activation reduced HDMEC migration via cyclic adenosine monophosphate (cAMP)‐dependent and protein kinase A (PKA)‐independent mechanisms as demonstrated through use of an EPAC agonist that auto‐inhibited the cAMP‐mediated β‐AR transduced reduction in HDMEC motility; a PKA inhibitor was, conversely, ineffective. ELISA studies demonstrated that β‐AR activation reduced pro‐angiogenic growth factor secretion from HDMECs (fibroblast growth factor 2) and keratinocytes (vascular endothelial growth factor A) revealing possible β‐AR‐mediated autocrine and paracrine anti‐angiogenic mechanisms. In more complex environments, β‐AR activation delayed HDMEC tubule formation and decreased angiogenesis both in the CAM assay and in murine excisional skin wounds in vivo. β‐AR activation reduced HDMEC function in vitro and angiogenesis in vivo; therefore, β‐AR agonists could be promising anti‐angiogenic modulators in skin. J. Cell. Physiol. 230: 356–365, 2015. © 2014 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.  相似文献   
9.
Endogenous DC electric fields (EF) are present during embryogenesis and are generated in vivo upon wounding, providing guidance cues for directional cell migration (galvanotaxis) required in these processes. To understand the role of beta (beta)4 integrin in directional migration, the migratory paths of either primary human keratinocytes (NHK), beta4 integrin-null human keratinocytes (beta4-), or those in which beta4 integrin was reexpressed (beta4+), were tracked during exposure to EFs of physiological magnitude (100 mV/mm). Although the expression of beta4 integrin had no effect on the rate of cell movement, it was essential for directional (cathodal) migration in the absence of epidermal growth factor (EGF). The addition of EGF potentiated the directional response, suggesting that at least two distinct but synergistic signaling pathways coordinate galvanotaxis. Expression of either a ligand binding-defective beta4 (beta4+AD) or beta4 with a truncated cytoplasmic tail (beta4+CT) resulted in loss of directionality in the absence of EGF, whereas inhibition of Rac1 blinded the cells to the EF even in the presence of EGF. In summary, both the beta4 integrin ligand-binding and cytoplasmic domains together with EGF were required for the synergistic activation of a Rac-dependent signaling pathway that was essential for keratinocyte directional migration in response to a galvanotactic stimulus.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号