首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   11篇
  2020年   1篇
  2018年   4篇
  2017年   4篇
  2016年   3篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2007年   1篇
  2006年   1篇
  2004年   2篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
1.
Neonatal hypoglycaemia initiates a series of events leading to neuronal death, even if glucose and glycogen stores return to normal. Disturbances in the cortical dopaminergic function affect memory and cognition. We recommend Bacopa monnieri extract or Bacoside A to treat neonatal hypoglycaemia. We investigated the alterations in dopaminergic functions by studying the Dopamine D1 and D2 receptor subtypes. Receptor-binding studies revealed a significant decrease (p < 0.001) in dopamine D1 receptor number in the hypoglycaemic condition, suggesting cognitive dysfunction. cAMP content was significantly (p < 0.001) downregulated in hypoglycaemic neonatal rats indicating the reduction in cell signalling of the dopamine D1 receptors. It is attributed to the deficits in spatial learning and memory. Hypoglycaemic neonatal rats treated with Bacopa extract alone and Bacoside A ameliorated the dopaminergic and cAMP imbalance as effectively as the glucose therapy. The upregulated Bax expression in the present study indicates the high cell death in hypoglycaemic neonatal rats. Enzyme assay of SOD confirmed cortical cell death due to free radical accumulation. The gene expression of SOD in the cortex was significantly downregulated (p < 0.001). Bacopa treatment showed a significant reversal in the altered gene expression parameters (p < 0.001) of Bax and SOD. Our results suggest that in the rat experimental model of neonatal hypoglycaemia, Bacopa extract improved alterations in D1, D2 receptor expression, cAMP signalling and cell death resulting from oxidative stress. This is an important area of study given the significant motor and cognitive impairment that may arise from neonatal hypoglycaemia if proper treatment is not implemented.  相似文献   
2.
Batteries for high temperature applications capable of withstanding over 60 °C are still dominated by primary cells. Conventional rechargeable energy storage technologies which have exceptional performance at ambient temperatures employ volatile electrolytes and soft separators, resulting in catastrophic failure under heat. A composite electrolyte/separator is reported that holds the key to extend the capability of Li‐ion batteries to high temperatures. A stoichiometric mixture of hexagonal boron nitride, piperidinium‐based ionic liquid, and a lithium salt is formulated, with ionic conductivity reaching 3 mS cm?1, electrochemical stability up to 5 V and extended thermal stability. The composite is used in combination with conventional electrodes and demonstrates to be stable for over 600 cycles at 120 °C, with a total capacity fade of less than 3%. The ease of formulation along with superior thermal and electrochemical stability of this system extends the use of Li‐ion chemistries to applications beyond consumer electronics and electric vehicles.  相似文献   
3.
In this investigation, we report on the treatment of tannery wastewater using microalgae Chlorella species to produce lipid and fatty acid as well as changes in antioxidant metabolism during the treatment. The variation in growth, production of pigments, antioxidant metabolism, lipid and fatty acids, and nutrient removal from wastewater during the remediation were observed. Surprisingly, a profuse growth was found in 50% diluted tannery wastewater (TW), which supported to accumulate high yield of lipid (18.5%) and unsaturated fatty acids (50.05%). The antioxidant activity of microalgae in both the concentrations (50% and 100% TW) were viz., lipid peroxidation 1.6 ± 0.1 and 2.3 ± 0.02nmol MDA mg?1 protein, SOD 10.3 ± 0.4 and 15.7 ± 0.9 U mg?1 protein, CAT 0.17 ± 0.036 and 0.52 ± 0.06 U mg?1 protein, and APX 7.2 ± 0.8 and 11.2 ± 09 U mg?1 protein respectively, which point out that the free radical scavenging mechanism against heavy metal stress. Maximum phycoremediation of heavy metals observed from both concentrations during the healthy growth period were Cr – 73.1, 45.7%, Cu – 90.4, 78.1%, Pb – 92.1, 52.2%, and Zn – 81.2, 44.6%, respectively. This study proved the potential use of Chlorella for heavy metal and nutrient removal from tannery wastewater. Moreover, an unaffected growth with high antioxidant activity of this species promises a sustainable lipid and fatty acid contents for biofuel production.  相似文献   
4.
Electrochemical reduction of CO2 provides an opportunity to reach a carbon‐neutral energy recycling regime, in which CO2 emissions from fuel use are collected and converted back to fuels. The reduction of CO2 to CO is the first step toward the synthesis of more complex carbon‐based fuels and chemicals. Therefore, understanding this step is crucial for the development of high‐performance electrocatalyst for CO2 conversion to higher order products such as hydrocarbons. Here, atomic iron dispersed on nitrogen‐doped graphene (Fe/NG) is synthesized as an efficient electrocatalyst for CO2 reduction to CO. Fe/NG has a low reduction overpotential with high Faradic efficiency up to 80%. The existence of nitrogen‐confined atomic Fe moieties on the nitrogen‐doped graphene layer is confirmed by aberration‐corrected high‐angle annular dark‐field scanning transmission electron microscopy and X‐ray absorption fine structure analysis. The Fe/NG catalysts provide an ideal platform for comparative studies of the effect of the catalytic center on the electrocatalytic performance. The CO2 reduction reaction mechanism on atomic Fe surrounded by four N atoms (Fe–N4) embedded in nitrogen‐doped graphene is further investigated through density functional theory calculations, revealing a possible promotional effect of nitrogen doping on graphene.  相似文献   
5.
3D CoNi2S4‐graphene‐2D‐MoSe2 (CoNi2S4‐G‐MoSe2) nanocomposite is designed and prepared using a facile ultrasonication and hydrothermal method for supercapacitor (SC) applications. Because of the novel nanocomposite structures and resultant maximized synergistic effect among ultrathin MoSe2 nanosheets, highly conductive graphene and CoNi2S4 nanoparticles, the electrode exhibits rapid electron and ion transport rate and large electroactive surface area, resulting in its amazing electrochemical properties. The CoNi2S4‐G‐MoSe2 electrode demonstrates a maximum specific capacitance of 1141 F g?1, with capacitance retention of ≈108% after 2000 cycles at a high charge–discharge current density of 20 A g?1. As to its symmetric device, 109 F g?1 at a scan rate of 5 mV s?1 is exhibited. This pioneering work should be helpful in enhancing the capacitive performance of SC materials by designing nanostructures with efficient synergetic effects.  相似文献   
6.
Aligned carbon nanotube (CNT) forests filled with a dehydrated polymer electrolyte are used to fabricate flexible solid state supercapacitors (SSCs) for multifunctional structural‐electronic applications. Local stiffness measurements on the composite electrodes determined through nano­indentation showed an 80% increase over the neat solid polymer electrolyte matrix. Electrochemical properties are monitored as a function of average tensile strain in the SSCs. Galvanostatic charge‐discharge tests with in situ microtensile testing on SSCs are used to show a 10% increase in the specific capacitance through the elastic region of the composite. The increase in capacitance is partly attributed to the enhanced double layer interaction that results from the partial alignment of the polymer electrolyte chains at the electrode‐electrolyte interface. When soaked in 1 m sulfuric acid, the specific capacitance of the CNT‐polymer electrolyte reached approximately 72 F g–1 at 60 °C.  相似文献   
7.
Ongoing interest is focused on aqueous zinc ion batteries (ZIBs) for mass‐production energy storage systems as a result of their affordability, safety, and high energy density. Ensuring the stability of the electrode/electrolyte interface is of particular importance for prolonging the cycling ability to meet the practical requirements of rechargeable batteries. Zinc anodes exhibit poor cycle life and low coulombic efficiency, stemming from the severe dendrite growth, and irreversible byproducts such as H2 and inactive ZnO. Great efforts have recently been devoted to zinc anode protection for designing high‐performance ZIBs. However, the intrinsic origins of zinc plating/striping are poorly understood, which greatly delay its potential applications. Rather than focusing on battery metrics, this review delves deeply into the underlying science that triggers the deposition/dissolution of zinc ions. Furthermore, recent advances in modulating the zinc coordination environment, uniforming interfacial electric fields, and inducing zinc deposition are highlighted and summarized. Finally, perspectives and suggestions are provided for designing highly stable zinc anodes for the industrialization of the aqueous rechargeable ZIBs in the near future.  相似文献   
8.
The present study suggests that the effect of silver coated polyester film fixed in culture racks serves as a reflector of light intensity on Spirulina platensis cultivation, using of KNO3 and urea as nitrogen sources. The use of light reflector (LR) gave light intensity of 4.8-6.0 klux and the reduction in number of tube light with reflector gave 2.5 klux of light intensity and its effect was studied on S. platensis. Total chlorophyll productions were observed for the cultivation at light intensity of two lights with reflector. This improvement is simple, inexpensive and saves 50% electric energy by reducing the number of lights, and thus contributes to energy conservation.  相似文献   
9.
Perovskite materials due to their exceptional photophysical properties are beginning to dominate the field of thin‐film optoelectronic devices. However, one of the primary challenges is the processing‐dependent variability in the properties, thus making it imperative to understand the origin of such variations. Here, it is discovered that the precursor solution aging time before it is cast into a thin film, is a subtle but a very important factor that dramatically affects the overall thin‐film formation and crystallinity and therein factors such as grain growth, phase purity, surface uniformity, trap state density, and overall solar cell performance. It is shown that progressive aging of the precursor promotes efficient formation of larger seeds after the fast nucleation of a large density of small seeds. The hot‐casting method then leads to the growth of large grains in uniform thin‐films with excellent crystallinity validated using scanning microscopy images and X‐ray diffraction patterns. The high‐quality films cast from aged solution is ideal for thin‐film photovoltaic device fabrication with reduced shunt current and good charge transport. This observation is a significant step toward achieving highly crystalline thin‐films with reliability in device performance and establishes the subtle but dramatic effect of solution aging before fabricating perovskite thin‐films.  相似文献   
10.
For the first time, a 3D Prussian blue analogue (PBA) with well‐defined spatial organization is fabricated by using a nickel hydroxide array as a precursor. The nickel hydroxide arrays are synthesized in titanium foil and reacted with K3[Fe(CN)6]. The plate‐like morphology of the nickel hydroxide is perfectly preserved and combined with abundant PBA nanocubes. After phosphidation at 350 °C, the obtained sample demonstrated excellent hydrogen evolution reaction (HER) activity in both acid and alkaline solutions to reach a current density of 10 mA cm?2 with an overpotential of only 70 and 121 mV, respectively. With an overpotential of 266 mV, it can reach a larger current density of 500 mA cm?2 in acid. The efficient HER activity of the obtained sample is mainly ascribed to its structural advantage with various active metal sites derived from the nickel hydroxide and PBA precursor. In addition, long‐term stability measurements have verified the good performance of the obtained sample in acid and alkaline solutions. An increment of overpotential of only 8 and 9 mV is observed, in the acid and alkaline solutions respectively. Beyond these assets, it is supposed that the strategy to synthesize 3D PBA arrays from nickel hydroxide can be extended to other metal–organic frameworks arrays for more electrochemical applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号