首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   0篇
  28篇
  2019年   1篇
  2018年   2篇
  2016年   1篇
  2013年   3篇
  2012年   2篇
  2010年   3篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1989年   2篇
  1985年   1篇
  1980年   1篇
排序方式: 共有28条查询结果,搜索用时 15 毫秒
1.
Peripheral chromatin granules bound to the nuclear envelope of rat liver nuclei have been further investigated. Judging by the results of Staphylococcal nuclease digestion of nuclei and electron microscopical observations, the peripheral granules have nucleosomal organization. As shown by ultraviolet radiation DNA-protein cross-linkage, the histone-like proteins present in the peripheral chromatin instead of histone H1 (Fais et al., 1982) are in close contact with DNA. The peripheral chromatin contains a DNA firmly bound to the lamina. This DNA, resistant to extraction in high salt, heparin and SDS, is protected against a DNase attack since, as shown by DNA electrophoresis data, high molecular weight molecules (up to 20 kbas) are still present in the lamina residue. However, the high molecular weight DNA disappeared if the nuclear envelope fraction was again DNase-digested after high salt treatment. Altogether, the data of the previous (Fais et al., 1982; Prusov et al., 1980: Prusov et al., 1982) and the present investigations demonstrate that the peripheral chromatin granules are endowed with properties which distinguish them from the bulk chromatin and account for the chromosome bond to the nuclear envelope during interphase. This is why we suggest the term "anchorosome" for the peripheral protein granule attached to the nuclear envelope.  相似文献   
2.
The role of the nuclear matrix components in the organization of structural and functional domains of interphase nuclei was studied using irradiation with blue light in the presence of a photosensibilized agent (Ethidium bromide). Nuclear domain resistance to extractive solution (2 M NaCl) treatment served as a criterion of irradiation-induced stabilization of different nuclear domains. The following results have been obtained: 1) the structural organization of the complexes of chromatin and clusters of replication does not depend on the state of the nuclear matrix in isolated nuclei; 2) chemical stabilization of the nuclear matrix by Cu(2+)-ions is not sufficient for the organization of chromatin domains; 3) irradiation in the presence of Ethidium bromide stabilizes domains of the nuclei, but does not lead to stabilization of the nuclear matrix internal network. Hence, the irradiation prevented extraction from the nuclear domains of nonhistone proteins which were not standard matrix proteins. Based on the results obtained, a hypothesis was proposed about a coexistence of two groups of nonhistone proteins in the cell nucleus. The first group includes proteins of the nuclear matrix involved in immobilization of scafford attachment regions and active genes. The second group includes some hypothetical structural proteins participating only in compaction of DNA of condensed chromatin.  相似文献   
3.
The method of chromatin photo-stabilization by the action of visible light in the presence of ethidium bromide was used for investigation of higher-level chromatin structures in isolated nuclei. As a model we used rat hepatocyte nuclei isolated in buffers which stabilized or destabilized nuclear matrix. Several higher-level chromatin structures were visualized: 100nm globules-chromomeres, chains of chromomeres-chromonemata, aggregates of chromomeres-blocks of condensed chromatin. All these structures were completely destroyed by 2M NaCl extraction independent of the matrix state, and DNA was extruded from the residual nuclei (nuclear matrices) into a halo. These results show that nuclear matrix proteins do not play the main role in the maintenance of higher-level chromatin structures. Preliminary irradiation led to the reduction of the halo width in the dose-dependent manner. In regions of condensed chromatin of irradiated nucleoids there were discrete complexes consisting of DNA fibers radiating from an electron-dense core and resembling the decondensed chromomeres or the rosette-like structures. As shown by the analysis of proteins bound to irradiated nuclei upon high-salt extraction, irradiation presumably stabilized the non-histone proteins. These results suggest that in interphase nuclei loop domains are folded into discrete higher-level chromatin complexes (chromomeres). These complexes are possibly maintained by putative non-histone proteins, which are extracted with high-salt buffers from non-irradiated nuclei.  相似文献   
4.
Incubation in vitro of rat liver nuclei in the presence of S-adenosyl[methyl-(3)H]methionine ([(3)H] SAM) leads to incorporation of the radioactive label not only into core-histones H3 and H4, but also into linker histone H1. Addition of distamycine A to the incubation medium stimulates label incorporation into histone H1 ~ in 6 times and into histone H3 ~ in 2 times. The presence of distamycine facilitates histone H1 extraction by polyglutamic acid (poly(Glu)) and decreases of UV-induced DNA-histone cross-links formation. These effects give evidence of weakening of H1-chromatin interaction by distamycin to be results of histone H1 position change relative to nucleosome and(or) disturbance of histones H1-H3 interactions so as these histones are exposed to additional methylation.  相似文献   
5.
Changes in chromatin structure at different stages of differentiation of human spermatids were studied. It was shown that, in nuclei of early spermatids, chromatin is loosely packed and its structural element is an 8-nm fiber. This “elementary” fiber is predominant at the initial stages of differentiation; in the course of maturation, it is replaced by globular elements approximately 60 nm in diameter. In intermediate spermatids, these globules start to condense into fibrillar aggregates and reduce their diameter to 30–40 nm. At all stages of spermatid maturation, except the final stages, these globules are convergence centers for elementary fibers. This remodelling process is vectored and directed from the apical (acrosomal) to the basal pole of the nucleus. In mature spermatids, the elementary 8-nm fibers are almost absent and the major components are 40-nm fibrillar aggregates. The nuclei of mature spermatids are structurally identical with the nuclei of spermatozoa with the so-called “immature chromatin,” which are commonly found in a low proportion in sperm samples from healthy donors and may prevail over the normal cells in spermiogenetic disorders. The cause of this differentiation blockade remains unknown. Possibly, the formation of intermolecular bonds between protamines, which are required for the final stages of chromatin condensation, is blocked in a part of spermatids. The results of this study are discussed in comparison with the known models of nucleoprotamine chromatin organization in human spermatozoa.  相似文献   
6.
7.
In our previous study, we have observed that the isolated coat proteins (CP) of the Potyvirus Potato Virus A (PVA) virions exhibit an intrinsic tendency to self-associate into various multimeric forms containing some fractions of cross-β-structure. In this report, we studied the effect of solution conditions on the structure and dissociation of isolated PVA CP using a number of complementary physicochemical methods. Analysis of the structure of PVA CP in solution was performed by limited proteolysis with MALDI-TOF mass spectrometry analysis, transmission electron microscopy, intrinsic fluorescence spectroscopy, and synchrotron small angle X-ray scattering (SAXS). Overall structural characteristics of PVA CP obtained by combination of these methods and ab initio shape reconstruction by SAXS show that PVA CP forms large multi-subunit particles. We demonstrate that a mixture of compact virus-like particles (VLP) longer than 30 nm is assembled on dialysis of isolated CP into neutral pH buffer (at low ionic strength). Under conditions of high ionic strength (0.5 M NaCl) and high pH (pH 10.5), PVA dissociates into low compactness oval-shaped particles of approximately 30 subunits (20–30 nm). The results of limited trypsinolysis of these particles (enzyme/substrate ratio 1:100, 30 min) showed the existence of non-cleavable core-fragment, consisting of 137 amino acid residues. Trypsin treatment removed only a short N-terminal fragment in the intact virions. These particles are readily reassembled into regular VLPs by changing pH back to neutral. It is possible that these particles may represent some kind of intermediate in PVA assembly in vitro and in vivo.  相似文献   
8.
One of the most important pathological consequences of renal ischemia/reperfusion (I/R) is kidney malfunctioning. I/R leads to oxidative stress, which affects not only nephron cells but also cells of the vascular wall, especially endothelium, resulting in its damage. Assessment of endothelial damage, its role in pathological changes in organ functioning, and approaches to normalization of endothelial and renal functions are vital problems that need to be resolved. The goal of this study was to examine functional and morphological impairments occurring in the endothelium of renal vessels after I/R and to explore the possibility of alleviation of the severity of these changes using mitochondria-targeted antioxidant 10-(6′-plastoquinonyl)decylrhodamine 19 (SkQR1). Here we demonstrate that 40-min ischemia with 10-min reperfusion results in a profound change in the structure of endothelial cells mitochondria, accompanied by vasoconstriction of renal blood vessels, reduced renal blood flow, and increased number of endothelial cells circulating in the blood. Permeability of the kidney vascular wall increased 48 h after I/R. Injection of SkQR1 improves recovery of renal blood flow and reduces vascular resistance of the kidney in the first minutes of reperfusion; it also reduces the severity of renal insufficiency and normalizes permeability of renal endothelium 48 h after I/R. In in vitro experiments, SkQR1 provided protection of endothelial cells from death provoked by oxygen–glucose deprivation. On the other hand, an inhibitor of NO-synthases, L-nitroarginine, abolished the positive effects of SkQR1 on hemodynamics and protection from renal failure. Thus, dysfunction and death of endothelial cells play an important role in the development of reperfusion injury of renal tissues. Our results indicate that the major pathogenic factors in the endothelial damage are oxidative stress and mitochondrial damage within endothelial cells, while mitochondria-targeted antioxidants could be an effective tool for the protection of tissue from negative effects of ischemia.  相似文献   
9.
In the present review the structural role of noncoding DNA, mechanisms of differential staining of mitotic chromosomes, and structural organization of different levels of DNA compactization are discussed. A structural-functional model of the mitotic chromosome is proposed based on the principle of discreteness of structural levels of DNA compactization.  相似文献   
10.
The incubation in vitro of rat liver nuclei in the presence of S-adenosyl[methyl-3H]methionine ([3H] SAM) leads to the incorporation of a radioactive label not only into core histones H3 and H4, but also into linker histone H1. The addition of distamycin A to the incubation medium stimulates label incorporation into histone H1 by approximately six times and into histone H3 by around two times. The presence of distamycin facilitates histone H1 extraction by polyglutamic acid (poly(Glu)) and decreases UV-induced DNA—histone cross-link formation. These effects give evidence that the weakening H1—chromatin interaction by distamycin may be the result of a histone H1 position change relative toward the nucleosome and (or) a disturbance of the histone H1–H3 interactions, as these histones are exposed to additional methylation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号