首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   9篇
  2024年   1篇
  2022年   3篇
  2021年   4篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   4篇
  2015年   3篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2010年   3篇
  2009年   1篇
  2008年   4篇
  2007年   9篇
  2005年   5篇
  2004年   1篇
  2003年   3篇
  2002年   3篇
  2001年   1篇
  2000年   4篇
  1999年   3篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1991年   1篇
  1990年   1篇
排序方式: 共有66条查询结果,搜索用时 0 毫秒
1.
Here, I use published mortality data from 56 natural populations of mammals to examine evidence for senescence, an increase in the probability of mortality with age. Data on extent of senescence and life history characteristics are compared across taxa in an attempt to test theories for the evolution of senescence in natural populations. In accord with theoretical expectation, senescence is highest in short-lived species with short generation times. In contrast to theoretical expectation, however, senescent increases in mortality rate do not begin until well after age at maturity in most cases. I also present evidence in support of the hypothesis that senescence will be lower in large-brained taxa.  相似文献   
2.
Symbionts and parasites can manipulate their hosts’ reproduction to their own benefit, profoundly influencing patterns of mate choice and evolution of the host population. Wolbachia is one of the most widespread symbionts among arthropods, and one that alters its hosts’ reproduction in diverse and dramatic ways. While we are beginning to appreciate how Wolbachia's extreme manipulations of host reproduction can influence species diversification and reproductive isolation, we understand little about how symbionts and Wolbachia, in particular, may affect intrapopulation processes of mate choice. We hypothesized that the maternally transmitted Wolbachia would increase the attractiveness of its female hosts to further its own spread. We therefore tested the effects of Wolbachia removal and microbiome disruption on female attractiveness and male mate choice among ten isofemale lines of Drosophila melanogaster. We found variable effects of general microbiome disruption on female attractiveness, with indications that bacteria interact with hosts in a line‐specific manner to affect female attractiveness. However, we found no evidence that Wolbachia influence female attractiveness or male mate choice among these lines. Although the endosymbiont Wolbachia can greatly alter the reproduction of their hosts in many species, there is no indication that they alter mate choice behaviours in D. melanogaster.  相似文献   
3.
4.
Until very recently, most studies of sperm competition have focused on variation in male competitive ability. However, we now know that a number of reproductive traits, including oviposition rate, use of stored sperm and receptivity to mating, vary with female condition. Because females can play an active part in the movement of sperm within their reproductive tract, sperm competition may be influenced by female condition. Existing studies of sperm competition in fruitflies ignore the effects of female condition, using females that are 3-4 days old and in their reproductive prime. But condition will decline as a female senesces. Here, we examine the effect of female age on the outcome of sperm competition in three strains of the fruitfly, Drosophila melanogaster. Previous studies have shown that female age influences preference for mates and male ejaculation strategies. In this study, we find that when males are mated to females that are older than 17 days, last-male sperm precedence decreases significantly. These results could lead to a greater understanding of the physiological mechanisms that regulate the outcome of sperm competition.  相似文献   
5.
Drosophila melanogaster is one of the most widely used model systems in biology. However, little is known about its associated bacterial community. As a first step towards understanding these communities, we compared bacterial 16S rRNA gene sequence libraries recovered from 11 natural populations of adult D. melanogaster. Bacteria from these sequence libraries were grouped into 74 distinct taxa, spanning the phyla Proteobacteria, Bacteroidetes, and Firmicutes, which were unevenly spread across host populations. Summed across populations, the distribution of abundance of genera was closely fit by a power law. We observed differences among host population locations both in bacterial community richness and in composition. Despite this significant spatial variation, no relationship was observed between species richness and a variety of abiotic factors, such as temperature and latitude. Overall, bacterial communities associated with adult D. melanogaster hosts are diverse and differ across host populations.  相似文献   
6.
Reproductive costs are an essential component of evolutionary theory. For instance, an increase in reproduction is generally coupled with a decrease in immunocompetence shortly after mating. However, recent work in Drosophila melanogaster suggests that the potential to mount an immune response, as measured by the levels of immune gene expression, increases after mating. These data are in contrast to previous studies, which suggest that mating can reduce a fly's ability to survive an actual bacterial challenge (realized immunity). This pattern may be driven by some aspect of mating, independent of resource limitation, which reduces immune function by inhibiting the effective deployment of immune gene products. Though several studies have examined both the potential and the realized immunity after mating, none have examined these immune measures simultaneously. Here, we examined the link between the potential and the realized immunity in a sterile mutant of D. melanogaster. Shortly after mating, we found that female immune gene expression was high, but survival against infection was low. Surprisingly, this pattern was reversed within 24 h. Thus, estimates of immunity based on gene expression do not appear to reflect an actual ability to defend against pathogens in the hours following copulation. We discuss the possible mechanisms that may account for this pattern.  相似文献   
7.
8.
Most theoretical models for the evolution of senescence have assumed a very large, well mixed population. Here, we investigate how limited dispersal and kin competition might influence the evolution of ageing by deriving indicators of the force of selection, similar to Hamilton (Hamilton 1966 J. Theor. Biol. 12, 12–45). Our analytical model describes how the strength of selection on survival and fecundity changes with age in a patchy population, where adults are territorial and a fraction of juveniles disperse between territories. Both parent–offspring competition and sib competition then affect selection on age-specific life-history traits. Kin competition reduces the strength of selection on survival. Mutations increasing mortality in some age classes can even be favoured by selection, but only when fecundity deteriorates rapidly with age. Population structure arising from limited dispersal however selects for a broader distribution of reproduction over the lifetime, potentially slowing down reproductive senescence. The antagonistic effects of limited dispersal on age schedules of fecundity and mortality cast doubts on the generality of conditions allowing the evolution of ‘suicide genes’ that increase mortality rates without other direct pleiotropic effects. More generally, our model illustrates how limited dispersal and social interactions can indirectly produce patterns of antagonistic pleiotropy affecting vital rates at different ages.  相似文献   
9.
When faced with limited resources, organisms have to determine how to allocate their resources to maximize fitness. In the presence of parasites, hosts may be selected for their ability to balance between the two competing needs of reproduction and immunity. These decisions can have consequences not only for host fitness, but also for the ability of parasites to persist within the population, and for the competitive dynamics between different host species. We develop two mathematical models to investigate how resource allocation strategies evolve at both population and metapopulation levels. The evolutionarily stable strategy (ESS) at the population level is a balanced investment between reproduction and immunity that maintains parasites, even though the host has the capacity to eliminate parasites. The host exhibiting the ESS can always invade other host populations through parasite-mediated competition, effectively using the parasites as biological weapons. At the metapopulation level, the dominant strategy is sometimes different from the population-level ESS, and depends on the ratio of local extinction rate to host colonization rate. This study may help to explain why parasites are as common as they are, and can serve as a modeling framework for investigating parasite-mediated ecological invasions. Furthermore, this work highlights the possibility that the ‘introduction of enemies’ process may facilitate species invasion.  相似文献   
10.
Around the world, human populations have experienced large increases in average lifespan over the last 150 years, and while individuals are living longer, they are spending more years of life with multiple chronic morbidities. Researchers have used numerous laboratory animal models to understand the biological and environmental factors that influence aging, morbidity, and longevity. However, the most commonly studied animal species, laboratory mice and rats, do not experience environmental conditions similar to those to which humans are exposed, nor do we often diagnose them with many of the naturally occurring pathologies seen in humans. Recently, the companion dog has been proposed as a powerful model to better understand the genetic and environmental determinants of morbidity and mortality in humans. However, it is not known to what extent the age‐related dynamics of morbidity, comorbidity, and mortality are shared between humans and dogs. Here, we present the first large‐scale comparison of human and canine patterns of age‐specific morbidity and mortality. We find that many chronic conditions that commonly occur in human populations (obesity, arthritis, hypothyroidism, and diabetes), and which are associated with comorbidities, are also associated with similarly high levels of comorbidity in companion dogs. We also find significant similarities in the effect of age on disease risk in humans and dogs, with neoplastic, congenital, and metabolic causes of death showing similar age trajectories between the two species. Overall, our study suggests that the companion dog may be an ideal translational model to study the many complex facets of human morbidity and mortality.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号