首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   4篇
  2017年   1篇
  2016年   4篇
  2015年   1篇
  2013年   2篇
  2010年   2篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2004年   1篇
  2001年   2篇
排序方式: 共有18条查询结果,搜索用时 484 毫秒
1.
2.
3.
4.
In this review, we will provide a brief reminder of epigenetic phenomena in general, and DNA methylation in particular. We will then underline the characteristics of the in vivo organization of the genome that limit the applicability of in vitro results. We will use several examples to point out the connections between DNA methylation and nuclear architecture. Finally, we will outline some of the hopes and challenges for future research in the field. The study of DNA methylation, its effectors, and its roles, illustrates the complementarity of in vitro approaches and cell biology.  相似文献   
5.
6.
7.
Legally certified sturgeon fisheries require population protection and conservation methods, including DNA tests to identify the source of valuable sturgeon roe. However, the available genetic data are insufficient to distinguish between different sturgeon populations, and are even unable to distinguish between some species. We performed high‐throughput single‐nucleotide polymorphism (SNP)‐genotyping analysis on different populations of Russian (Acipenser gueldenstaedtii), Persian (A. persicus), and Siberian (A. baerii) sturgeon species from the Caspian Sea region (Volga and Ural Rivers), the Azov Sea, and two Siberian rivers. We found that Russian sturgeons from the Volga and Ural Rivers were essentially indistinguishable, but they differed from Russian sturgeons in the Azov Sea, and from Persian and Siberian sturgeons. We identified eight SNPs that were sufficient to distinguish these sturgeon populations with 80% confidence, and allowed the development of markers to distinguish sturgeon species. Finally, on the basis of our SNP data, we propose that the A. baerii‐like mitochondrial DNA found in some Russian sturgeons from the Caspian Sea arose via an introgression event during the Pleistocene glaciation.  相似文献   
8.
The three‐spined stickleback (Gasterosteus aculeatus L.) is an important model organism for studying the molecular mechanisms of speciation and adaptation to salinity. Despite increased interest to microRNA discovery and recent publication on microRNA prediction in the three‐spined stickleback using bioinformatics approaches, there is still a lack of experimental support for these data. In this paper, high‐throughput sequencing technology was applied to identify microRNA genes in gills of the three‐spined stickleback. In total, 595 miRNA genes were discovered; half of them were predicted in previous computational studies and were confirmed here as microRNAs expressed in gill tissue. Moreover, 298 novel microRNA genes were identified. The presence of miRNA genes in selected ‘divergence islands’ was analysed and 10 miRNA genes were identified as not randomly located in ‘divergence islands’. Regulatory regions of miRNA genes were found enriched with selective SNPs that may play a role in freshwater adaptation.  相似文献   
9.
10.
BackgroundThe three-dimensional organization of the genome is tightly connected to its biological function. The Hi-C approach was recently introduced as a method that can be used to identify higher-order chromatin interactions genome-wide. The aim of this study was to determine genome-wide chromatin interaction frequencies using the Hi-C approach in mouse sperm cells and embryonic fibroblasts.ResultsThe obtained data demonstrate that the three-dimensional genome organizations of sperm and fibroblast cells show a high degree of similarity both with each other and with the previously described mouse embryonic stem cells. Both A- and B-compartments and topologically associated domains are present in spermatozoa and fibroblasts. Nevertheless, sperm cells and fibroblasts exhibit statistically significant differences between each other in the contact probabilities of defined loci. Tight packaging of the sperm genome results in an enrichment of long-range contacts compared with the fibroblasts. However, only 30% of the differences in the number of contacts are based on differences in the densities of their genome packages; the main source of the differences is the gain or loss of contacts that are specific for defined genome regions. We find that the dependence of the contact probability on genomic distance for sperm is close to the dependence predicted for the fractal globular folding of chromatin.ConclusionsOverall, we can conclude that the three-dimensional structure of the genome is passed through generations without being dramatically changed in sperm cells.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-015-0642-0) contains supplementary material, which is available to authorized users.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号