首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   136篇
  免费   18篇
  国内免费   9篇
  2024年   1篇
  2022年   2篇
  2021年   3篇
  2018年   2篇
  2017年   3篇
  2016年   4篇
  2015年   5篇
  2014年   13篇
  2013年   7篇
  2012年   8篇
  2011年   12篇
  2010年   6篇
  2009年   2篇
  2008年   4篇
  2007年   8篇
  2006年   10篇
  2005年   5篇
  2004年   6篇
  2003年   4篇
  2002年   10篇
  2001年   3篇
  2000年   2篇
  1999年   5篇
  1998年   3篇
  1997年   1篇
  1995年   1篇
  1994年   3篇
  1993年   2篇
  1992年   6篇
  1991年   1篇
  1990年   4篇
  1989年   3篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1974年   2篇
排序方式: 共有163条查询结果,搜索用时 15 毫秒
1.
肺癌在中国恶性肿瘤的发病率位居第一,随着低剂量薄层CT在肺癌筛查中的广泛应用,临床发现更多表现为非完全实性结节的肺腺癌,目前众多研究使CT影像学特征和肺腺癌病理的关系得到更进一步的认知,虽然CT能对部分非完全实性结节做出定性和定位诊断,但仍有部分非完全实性结节诊断困难,PET-CT结合了病灶的代谢信息和精确的定位信息,从而提高对肺部结节诊断的敏感性、特异性、准确性,综合多个文献PET-CT在非完全实性结节中的诊断分期价值较CT无明显提升,却在评估预后和制定合适手术方案上可以起到一定的作用,本文就PET-CT在SSN中的应用价值进行阐述。  相似文献   
2.
Deoxycholate promotes phospholipase C degradation of endogenous phosphatidyl[3H]inositol (Pl), phosphatidyl[3H]inositol monophosphate (PIP) and phosphatidyl[3H]inositol bisphosphate (PIP2) in rat cornea and human platelets. Hydrolysis of phosphatidyl[3H]inositol significantly lags polyphospho[3H]inositide degradation. Concomitantly, formation of [3H]inositol monophosphate (IP1) lags behind [3H]inositol bisphosphate (IP2) and [3H]inositol trisphosphate (IP3) production. These results demonstrate that rat cornea and human platelet phospholipase C cause a preferential hydrolysis of the endogenous polyphosphoinositides rather than phosphatidylinositol.  相似文献   
3.
Subunit association of beta-hexosaminidase was studied in intact fibroblasts using antisera that discriminate between free and associated alpha-chains. These were anti-beta-hexosaminidase A (anti-alpha beta), which precipitated all alpha-chains, free or associated; anti-beta-hexosaminidase B (anti-beta beta), which precipitated those alpha-chains that were associated with beta; and anti-alpha-chains, which recognized only monomeric alpha-chains. After biosynthetic labeling, beta-hexosaminidase or its free alpha-subunit were immuno-precipitated from extracts of cells and medium with the aid of protein A-bearing Staphylococcus aureus, subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and visualized by fluorography. Pulse-chase labeling showed that the alpha-chains existed predominantly in the monomeric precursor form during the first 5 h, and then began to accumulate in the mature (lysosomal) associated alpha beta form. Precursor alpha beta complexes were secreted, along with some precursor alpha monomers; the latter were catalytically inert. Both alpha- and beta-chains were phosphorylated (a Golgi modification) prior to association. Thus alpha-beta association probably occurred in the Golgi area before transfer to lysosomes and before secretion. Cycloheximide inhibited the association and subsequent maturation of preformed alpha-chains, perhaps by causing a depletion of a pool of beta-chain precursor upstream from the site of subunit association. In fibroblasts from a patient with Sandhoff disease, that produced no beta-chains, the alpha-chains self-associated but their maturation was markedly decreased. We suggest that association with beta-chains is necessary not only for acquisition of catalytic activity but also for transport of alpha-chains to lysosomes.  相似文献   
4.
5.
Sphingosine 1-phosphate (S1P) is a bioactive lipid whose levels are tightly regulated by its synthesis and degradation. Intracellularly, S1P is dephosphorylated by the actions of two S1P-specific phosphatases, sphingosine-1-phosphate phosphatases 1 and 2. To identify the physiological functions of S1P phosphatase 1, we have studied mice with its gene, Sgpp1, deleted. Sgpp1−/− mice appeared normal at birth, but during the 1st week of life they exhibited stunted growth and suffered desquamation, with most dying before weaning. Both Sgpp1−/− pups and surviving adults exhibited multiple epidermal abnormalities. Interestingly, the epidermal permeability barrier developed normally during embryogenesis in Sgpp1−/− mice. Keratinocytes isolated from the skin of Sgpp1−/− pups had increased intracellular S1P levels and displayed a gene expression profile that indicated overexpression of genes associated with keratinocyte differentiation. The results reveal S1P metabolism as a regulator of keratinocyte differentiation and epidermal homeostasis.  相似文献   
6.
Objectives Somatoform disorders are common in international primary care settings, but have been little studied in the developing world. The objective of this study was to determine the prevalence of severe undifferentiated somatoform disorder, and its relationship to depression and anxiety, among patients attending walk-in clinics in Trinidad.Methods The study participants, who were all aged 18 years or older and attending walk-in clinics at 16 randomly selected health centres, were surveyed between May and August 2007 using the PRIME-MD questionnaire.Results There were 594 participants (the response rate was 92%), of whom 72.7% were female. Their ages ranged from 18 to 93 years, and 54.5% were over 50 years of age. In total, 37.2% were married and 25.9% were single. Indo-Trinidadians represented 43.1% and Afro-Trinidadians represented 36% of the study sample; 56.5% of the participants reported that their income was less than US$ 400 per month, and 65.7% were unemployed. At walk-in clinics in Trinidad, the estimated prevalence of severe undifferentiated somatoform disorder was 10.3% (95% CI: 7.86–12.74), that of hypochondriasis was 28.5% (95% CI: 24.9–32.1), and that of body dysmorphic disorder was 15.8% (95% CI: 11.9–18.7). Severe undifferentiated somatoform disorder was statistically significantly associated with gender and ethnicity but not with age, level of education, employment status or income. Chi-square testing found significant associations between the presence of severe undifferentiated somatoform disorder and both depression and anxiety (P < 0.05), between hypochondriasis and both anxiety and depression (P < 0.05), and between body dysmorphic disorder and depression (P < 0.05) but not anxiety. Regression analysis suggested that the demographic features that predicted severe undifferentiated somatoform disorder were being female or Indo-Trinidadian.Conclusions Walk-in clinics in Trinidad that serve older patients on a lower income have a high proportion of patients with somatoform disorders as measured by the PRIME-MD scale. These patients exhibit many features of anxiety and depression. These findings have implications for medical training and service delivery.  相似文献   
7.
Sulfatides show structural, and possibly physiological similarities to gangliosides. Kidney dysfunction might be correlated with changes in sulfatides, the major acidic glycosphingolipids in this organ. To elucidate their in vivo metabolic pathway these compounds were analyzed in mice afflicted with inherited glycosphingolipid disorders. The mice under study lacked the genes encoding either beta-hexosaminidase alpha-subunit (Hexa-/-), the beta-hexosaminidase beta-subunit (Hexb-/-), both beta-hexosaminidase alpha and beta-subunits (Hexa-/- and Hexb-/-), GD3 synthase (GD3S-/-), GD3 synthase and GalNAc transferase (GD3S-/- and GalNAcT-/-), GM2 activator protein (Gm2a-/-), or arylsulfatase A (ASA-/-). Quantification of the sulfatides, I(3)SO(3)(-)-GalCer (SM4s), II(3)SO(3)(-)-LacCer (SM3), II(3)SO(3)(-)-Gg(3)Cer (SM2a), and IV(3,) II(3)-(SO(3)(-))(2)-Gg(4)Cer (SB1a), was performed by nano-electrospray tandem mass spectrometry. We conclude for the in vivo situation in mouse kidneys that: 1) a single enzyme (GalNAc transferase) is responsible for the synthesis of SM2a and GM2 from SM3 and GM3, respectively. 2) In analogy to GD1a, SB1a is degraded via SM2a. 3) SM2a is hydrolyzed to SM3 by beta-hexosaminidase S (Hex S) and Hex A, but not Hex B. Both enzymes are supported by GM2-activator protein. 4) Arylsulfatase A is required to degrade SB1a. It is probably the sole sphingolipid-sulfatase cleaving the galactosyl-3-sulfate bond. In addition, a human Tay-Sachs patient's liver was investigated, which showed accumulation of SM2a along with GM2 storage. The different ceramide compositions of both compounds indicated they were probably derived from different cell types. These data demonstrate that in vivo the sulfatides of the ganglio-series follow the same metabolic pathways as the gangliosides with the replacement of sulfotransferases and sulfatases by sialyltransferases and sialidases. Furthermore, a novel neutral GSL, IV(6)GlcNAcbeta-Gb(4)Cer, was found to accumulate only in Hexa-/- and Hexb-/- mouse kidneys. From this we conclude that Hex S also efficiently cleaves terminal beta1-6-linked HexNAc residues from neutral GSLs in vivo.  相似文献   
8.
Extracellular sphingolipid signaling has been implicated as an essential event in vascular development. Sphingosine-1-phosphate (S1P), through interactions with G protein-coupled receptors, regulates functions of endothelial and smooth muscle cells (SMCs)-the major cell types of the vasculature. The knockout of the gene encoding the S1P1 receptor (formally known as Edg-1) in mice blocks vascular maturation, the process where SMCs and pericytes envelop nascent endothelial tubes. The question that remains is how stimulation of S1P receptors controls this critical event in the developmental sequence leading to the formation of functional blood vessels.  相似文献   
9.
Angiogenesis is the formation of new blood vessels from the pre-existing vasculature. However, the study of this complex process is often hampered by the lack of a suitable cell-based model and the tools to study the biochemical events that lead to new blood vessel growth. The most widely accepted model for angiogenesis is the in vivo rat corneal model. In this model, the cornea, which is normally an avascular tissue, is stimulated to undergo angiogenesis in response to silver nitrate cauterization or to the implantation of an exogenous angiogenic agent. The physical changes associated with the new vessel growth can be readily monitored visually, but the regulated biochemical events that result in the growth and remodeling of the new vessels are much more challenging to decipher. In this report, a proteomics approach is evaluated for its utility in deciphering the biochemical events during a time course of angiogenic stimulation. At various time points post-silver nitrate cautery, corneas were harvested, solubilized, and analyzed by two-dimensional gel electrophoresis. Protein expression profiles at the various stages of angiogenesis were compared to those of control corneas. One hundred and eleven differentially-expressed proteins were identified by either matrix-assisted laser desorption/ionization-time of flight mass spectrometry or liquid chromatography-coupled electrospray ionization tandem mass spectrometry. Many of the proteins up-regulated during the angiogenesis process were identified as blood-related proteins, thus validating the development of functional blood vessels in the normally avascular tissue of the cornea. Furthermore, detection of differentially-regulated proteins in cauterized versus control tissue clearly validated the utility of a proteomics approach to study this model of angiogenesis. However, in order to get at the key regulatory proteins in the angiogenesis process, it is clear that additional scale-up and enrichment approaches will be required.  相似文献   
10.

Background

Influenza viruses are a major cause of morbidity and mortality around the world. More recently, a swine-origin influenza A (H1N1) virus that is spreading via human-to-human transmission has become a serious public concern. Although vaccination is the primary strategy for preventing infections, influenza antiviral drugs play an important role in a comprehensive approach to controlling illness and transmission. In addition, a search for influenza-inhibiting drugs is particularly important in the face of high rate of emergence of influenza strains resistant to several existing influenza antivirals.

Methods

We searched for novel anti-influenza inhibitors using a cell-based neutralization (inhibition of virus-induced cytopathic effect) assay. After screening 20,800 randomly selected compounds from a library from ChemDiv, Inc., we found that BPR1P0034 has sub-micromolar antiviral activity. The compound was resynthesized in five steps by conventional chemical techniques. Lead optimization and a structure-activity analysis were used to improve potency. Time-of-addition assay was performed to target an event in the virus life cycle.

Results

The 50% effective inhibitory concentration (IC50) of BPR1P0034 was 0.42 ± 0.11 μM, when measured with a plaque reduction assay. Viral protein and RNA synthesis of A/WSN/33 (H1N1) was inhibited by BPR1P0034 and the virus-induced cytopathic effects were thus significantly reduced. BPR1P0034 exhibited broad inhibition spectrum for influenza viruses but showed no antiviral effect for enteroviruses and echovirus 9. In a time-of-addition assay, in which the compound was added at different stages along the viral replication cycle (such as at adsorption or after adsorption), its antiviral activity was more efficient in cells treated with the test compound between 0 and 2 h, right after viral infection, implying that an early step of viral replication might be the target of the compound. These results suggest that BPR1P0034 targets the virus during viral uncoating or viral RNA importation into the nucleus.

Conclusions

To the best of our knowledge, BPR1P0034 is the first pyrazole-based anti-influenza compound ever identified and characterized from high throughput screening to show potent (sub-μM) antiviral activity. We conclude that BPR1P0034 has potential antiviral activity, which offers an opportunity for the development of a new anti-influenza virus agent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号