首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   9篇
  2017年   4篇
  2016年   2篇
  2015年   5篇
  2014年   6篇
  2013年   8篇
  2012年   3篇
  2011年   1篇
  2010年   2篇
  2009年   7篇
  2008年   2篇
  2007年   2篇
  2006年   5篇
  2005年   3篇
  2002年   1篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   3篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   3篇
  1990年   6篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1982年   2篇
  1981年   1篇
  1977年   2篇
  1975年   1篇
  1974年   1篇
  1971年   1篇
排序方式: 共有88条查询结果,搜索用时 15 毫秒
1.
WhileEscherichia coli is common as a commensal organism in the distal ileum and colon, the presence of colonization factors (CF) on pathogenic strains ofE. coli facilitates attachment of the organism to intestinal receptor molecules in a species- and tissue-specific fashion. After the initial adherence, colonization occurs, and the involvement of additional virulence determinants leads to illness. EnterotoxigenicE. coli (ETEC) is the most extensively studied of the five categories ofE. coli that cause diarrheal disease, and has the greatest impact on health worldwide. ETEC can be isolated from domestic animals and humans. The biochemistry, genetics, epidemiology, antigenic characteristics, and cell and receptor binding properties of ETEC have been extensively described. Another major category, enteropathogenicE. coli (EPEC), has virulence mechanisms, primarily effacement and cytoskeletal rearrangement of intestinal brush borders, that are distinct from ETEC. An EPEC CF receptor has been purified and characterized as a sialidated transmembrane glycoprotein complex directly attached to actin, thereby associating CF-binding with host-cell response. Three, additional categories ofE. coli diarrheal disease, their colonization factors and their host cell receptors are discussed. It appears that biofilms exist in the intestine in a manner similar to oral bacterial biofilms, and thatE. coli is part of these biofilms as both commensals and pathogens.Abbreviations CF colonization factor - CFA Colonization Factor Antigen - CS coli-surface-associated antigen - EAggEC enteroaggregativeE. coli - ECDD E. coli diarrheal disease - EHEC enterohemorrhagicE. coli - EIEC enteroinvasiveE. coli - EPEC enteropathogenicE. coli - ETEC enterotoxigenicE. coli - Gal galactose - GalNAc N-acetyl galactosamine - LT heat-labile toxin - NeuAc N-acetyl neuraminic acid - PCF Putative colonization factor - RBC red blood cells - SLT Shiga-like toxin - ST heat-stable toxin  相似文献   
2.
The Palaearctic species Drosophila subobscura has recently colonized a large area of North America where it coexists with Drosophila pseudoobscura. The viability and developmental rate of these species were studied at 13 d?C, 18d?C and 23 d?C and at densities of 10, 50, 100 and 200 eggs per vial. The two species were differently affected by density and temperature in the ranges studied. Both intra- and interspecific cultures showed that D. pseudoobscura was best adapted to 23 d?C, where it was clearly the dominant species. On the other hand, at 18 d?C and especially at 13 d?C, although D. subobscura was less viable than D. pseudoobscura, its developmental time was shorter, which may give advantage to this species. Results reported here agree with the observed distribution of these species in North America.  相似文献   
3.
Molecular drift of the bride of sevenless (boss) gene in Drosophila   总被引:6,自引:1,他引:5  
DNA sequences were determined for three to five alleles of the bride-of- sevenless (boss) gene in each of four species of Drosophila. The product of boss is a transmembrane receptor for a ligand coded by the sevenless gene that triggers differentiation of the R7 photoreceptor cell in the compound eye. Population parameters affecting the rate and pattern of molecular evolution of boss were estimated from the multinomial configurations of nucleotide polymorphisms of synonymous codons. The time of divergence between D. melanogaster and D. simulans was estimated as approximately 1 Myr, that between D. teissieri and D. yakuba as approximately 0.75 Myr, and that between the two pairs of sibling species as approximately 2 Myr. (The boss genes themselves have estimated divergence times approximately 50% greater than the species divergence times.) The effective size of the species was estimated as approximately 5 x 10(6), and the average mutation rate was estimated as 1-2 x 10(-9)/nucleotide/generation. The ratio of amino acid polymorphisms within species to fixed differences between species suggests that approximately 25% of all possible single-step amino acid replacements in the boss gene product may be selectively neutral or nearly neutral. The data also imply that random genetic drift has been responsible for virtually all of the observed differences in the portion of the boss gene analyzed among the four species.   相似文献   
4.
We have analyzed the conserved regions of the gene coding for the circumsporozoite protein (CSP) in 12 species of Plasmodium, the malaria parasite. The closest evolutionary relative of P. falciparum, the agent of malignant human malaria, is P. reichenowi, a chimpanzee parasite. This is consistent with the hypothesis that P. falciparum is an ancient human parasite, associated with humans since the divergence of the hominids from their closest hominoid relatives. Three other human Plasmodium species are each genetically indistinguishable from species parasitic to nonhuman primates; that is, for the DNA sequences included in our analysis, the differences between species are not greater than the differences between strains of the human species. The human P. malariae is indistinguishable from P. brasilianum, and P. vivax is indistinguishable from P. simium; P. brasilianum and P. simium are parasitic to New World monkeys. The human P. vivax-like is indistinguishable from P. simiovale, a parasite of Old World macaques. We conjecture that P. malariae, P. vivax, and P. vivax-like are evolutionarily recent human parasites, the first two at least acquired only within the last several thousand years, and perhaps within the last few hundred years, after the expansion of human populations in South America following the European colonizations. We estimate the rate of evolution of the conserved regions of the CSP gene as 2.46 x 10(-9) per site per year. The divergence between the P. falciparum and P. reichenowi lineages is accordingly dated 8.9 Myr ago. The divergence between the three lineages leading to the human parasites is very ancient, about 100 Myr old between P. malariae and P. vivax (and P. vivax-like) and about 165 Myr old between P. falciparum and the other two.   相似文献   
5.
Oligomeric forms of the acetylcholine receptor are directly visualized by electron microscopy in receptor-rich membranes from torpedo marmorata. The receptor structures are quantitatively correlated with the molecular species so far identified only after detergent solubilization, and further related to the polypeptide composition of the membranes and changes thereof. The structural identification is made possibly by the increased fragility of the membranes after extraction of nonreceptor peptides and their subsequent disruption upon drying onto hydrophilic carbon supports. Receptor particles in native membranes depleted of nonreceptor peptides appear as single units of 7-8 nm, and double and multiple aggregates thereof. Particle doublets having a main-axis diameter of 19 +/- 3 nm predominate in these membranes. Linear aggregates of particles similar to those observed in rotary replicas of quick-frozen fresh electrolytes (Heuser, J.E. and S. R. Salpeter. 1979, J. Cell Biol. 82: 150-173) are also present in the alkaline-extracted membranes. Chemical modifications of the thiol groups shift the distribution of structural species. Dithiothreitol reduction, which renders almost exclusively the 9S, monomeric receptor form, results in the observation of the 7-8 nm particle in isolated form. The proportion of doublets increases in membranes alkylated with N-ethylmaleimide. Treatment with 5,5’-dithiobis-(nitrobenzoic acid) increases the proportion of higher oligomeric species, and particle aggregates (n=oligo) predominate. The nonreceptor v-peptide (doublet of M(r) 43,000) appears to play a role in the receptor monomer-polymer equilibria. Receptor protein and v-peptide co-aggregate upon reduction and reoxidation of native membranes. In membranes protected ab initio with N- ethylmaleimide, only the receptor appears to self-aggregate. The v-peptide cannot be extracted from these alkylated membranes, though it is easily released from normal, subsequently alkylated or reduced membranes. A stabilization of the dimeric species by the nonreceptor v-peptide is suggested by these experiments. Monospecific antibodies against the v-peptide are used in conjunction with rhodamine- labeled anti-bodies in an indirect immunoflourescence assay to map the vectorial exposure of the v-peptide. When intact membranes, v-peptide depleted and “holey” native membranes (treated with 0.3 percent saponin) are compared, maximal labeling is obtained with the latter type of membranes, suggesting a predominantly cytoplasmic exposure of the antigenic determinants of the v-peptide in the membrane. The influence of the v-peptide in the thiol-dependent interconversions of the receptor protein and the putative topography of the peptide are analyzed in the light of the present results.  相似文献   
6.
Eleven populations of Drosophila subobscura that had been maintained in laboratory conditions during different periods of time were examined for evidence of genetic divergence in mating activity. The results indicate that mating activity increases with the time of maintenance under laboratory conditions.  相似文献   
7.
South America was isolated from other continents during most of the Cenozoic, developing a singular mammalian fauna. In contrast to North America, Europe, Asia, and Africa, up to the late Neogene, the carnivore adaptive zone in South America was populated by crocodiles (Sebecidae), large snakes (Madtsoiidae), large birds (Phorusrhacidae), and metatherian mammals (Sparassodonta). Sparassodonta were varied and comprised a wide range of body masses (≈ 2–50 kg) and food habits. Their diversity decreased towards the late Miocene (Huayquerian Stage/Age) and the group became extinct in the “middle” Pliocene (≈ 3 Ma, Chapadmalalan Stage/Age). Several authors have suggested that the cause of this decline and extinction was the ingression of carnivorans to South America (about 6–7 Ma ago), because they competed with the Sparassodonta; although this hypothesis has been criticized in recent years. With the intention of testing the hypothesis of “competitive displacement,” we review the fossil record of South American Sparassodonta and Carnivora, collect data about diversity, estimate size and diet, and determine first and last appearances. The diversity of Sparassodonta is low relative to that of Carnivora throughout the Cenozoic with the early Miocene (Santacrucian Stage/Age) showing the greatest diversity with 11 species. In the late Miocene-middle Pliocene (Huayquerian Stage/Age), the fossil record shows overlap of groups, and the Sparassodonta’s richness curve begins to decline with the first record of Carnivora. Despite this overlap, carnivorans diversity ranged from four or fewer species in the late Miocene-Pliocene to a peak of around 20 species in the early Pleistocene (Ensenadan Stage/Age). Carnivora was initially represented by small-sized, omnivorous species, with large omnivores first appearing in the Chapadmalalan Stage/Age. Over this period, Sparassodonta was represented by large and small hypercarnivores and a single large omnivorous species. From this review of the fossil record, it is suggested that factors other than competitive displacement may have caused the extinction of the Sparassodonta.  相似文献   
8.
Despite recent taxonomic evaluations of Mephitidae and North American hog‐nosed skunks, southern South American species of Conepatus have not been thoroughly examined in a systematic context. Conepatus chinga and Conepatus humboldtii were described more than 150 years ago, based on external characters such as hair coloration and size. Although historically recognized as valid species, to date no detailed systematic analysis has been performed for either of these taxa. Herein, we evaluated the taxonomic status of C. chinga and C. humboldtii within the southern part of South America using geometric morphometrics of the skull and mandible, mitochondrial DNA analysis using the cytochrome b and cytochrome oxidase c subunit I genes, and also control region and pelage pattern variation. We failed to find morphological (skull shape and pelage coloration patterns) or molecular differences between these two species; thus, we considered that the specimens assigned to C. chinga and C. humboldtii belong to the same species. Our results indicate that environmental variation seems to be responsible for shape and size variation in Conepatus skulls from southern South America. © 2013 The Linnean Society of London  相似文献   
9.
In this paper the systematic position and age of several Pleistocene cat remains found in southern South American are studied, in an attempt to more fully document the scarce record of the group and clear up their obscure Quaternary history. The fossils are compared with a large sample of recent specimens by means of qualitative and quantitative characters, as well as multivariate methods (discriminant analysis). The age of previous records is restricted using recent chronostratigraphic and biostratigraphic studies. Ly. colocolo is recorded in the late Ensenadan (0.78-0.5 Ma BP) and Bonaerian/Lujanian (0.5 Ma-8.5 Ka BP) ages of the Pampean Region (Argentina) and in the late Pleistocene or Holocene of Tierra del Fuego (Chile). An incomplete hemimandible found in the Bonaerian of the Pampean Region is referred to cf. Herpailurus and could be the earliest record of this lineage. Two other remains could belong to On. geoffroyi, but their incompleteness and some differences prevent their assignation to this recent species. The age of “Felisvorohuensis is restricted to the late Ensenadan. The fossil record of the Ocelot Lineage is very fragmentary, but it is at least as old as late Ensenadan. Taphonomic biases are responsible for this poor fossil record and this fact could partially explain the hiatus with respect to the timing estimated by molecular divergence. The combination of data suggests that Ly. colocolo, On. guigna, On. geoffroyi and Oreailurus jacobita speciated in South America, supporting previous opinions. If the molecular divergence dates are right the recent diversity of this group could be explained by a minimum of five to six immigrations.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号