首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   4篇
  39篇
  2017年   2篇
  2014年   1篇
  2013年   4篇
  2012年   1篇
  2011年   4篇
  2009年   4篇
  2008年   1篇
  2007年   3篇
  2006年   1篇
  2005年   4篇
  2004年   1篇
  2003年   3篇
  2002年   3篇
  2001年   1篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1988年   1篇
  1977年   1篇
  1974年   1篇
排序方式: 共有39条查询结果,搜索用时 0 毫秒
1.
Intersectin-1s (ITSN-1s), a five Src homology 3 (SH3) domain-containing protein, is critically required for caveolae and clathrin-mediated endocytosis (CME), due to its interactions with dynamin (dyn). Of the five SH3A-E domains, SH3A is unique because of its high affinity for dyn and potent inhibition of CME. However, the molecular mechanism by which SH3A integrates in the overall function of ITSN-1s to regulate the endocytic process is not understood. Using biochemical and functional approaches as well as high-resolution electron microscopy, we show that SH3A exogenously expressed in human lung endothelial cells caused abnormal endocytic structures, distorted caveolae clusters, frequent staining-dense rings around the caveolar necks and 60% inhibition of caveolae internalization. In vitro studies further revealed that SH3A, similar to full-length ITSN-1s stimulates dyn2 oligomerization and guanosine triphosphatase (GTP)ase activity, effects not detected when other SH3 domains of ITSN-1s were used as controls. Strikingly, in the presence of SH3A, dyn2-dyn2 interactions are stabilized and despite continuous GTP hydrolysis, dyn2 oligomers cannot disassemble. SH3A may hold up caveolae release from the plasma membrane and formation of free-transport vesicles, by prolonging the lifetime of assembled dyn2. Altogether, our results indicate that ITSN-1s, via its SH3A has the unique ability to regulate dyn2 assembly-disassembly and function during endocytosis.  相似文献   
2.
We have demonstrated that the plasmalemmal vesicles (caveolae) of the continuous microvascular endothelium function as transcytotic vesicular carriers for protein molecules > 20 A and that transcytosis is an N-ethylmaleimide-sensitive factor (NSF)-dependent, N-ethylmaleimide-sensitive process. We have further investigated NSF interactions with endothelial proteins to find out 1) whether a complete set of fusion and targeting proteins is present in the endothelium; 2) whether they are organized in multimolecular complexes as in neurons; and 3) whether the endothelial multimolecular complexes differ from their neuronal counterparts, because of their specialized role in transcytosis. To generate the complexes, we have used myc-NSF, cultured pulmonary endothelial cells, and rat lung cytosol and membrane preparations; to detect them we have applied coimmunoprecipitation with myc antibodies; and to characterize them we have used velocity sedimentation and cross-linking procedures. We have found that both cytosolic and membrane fractions contain complexes that comprise beside soluble NSF attachment proteins and SNAREs (soluble NSF attachment protein receptor), rab 5, dynamin, caveolin, and lipids. By immunogold labeling and negative staining we have detected in these complexes, myc-NSF, syntaxin, dynamin, caveolin, and endogenous NSF. Similar complexes are formed by endogenous NSF. The results indicate that complexes with a distinct protein-lipid composition exist and suggest that they participate in targeting, fusion, and fission of caveolae with the endothelial plasmalemma.  相似文献   
3.

Background

Molluscs are the most diverse marine phylum and this high diversity has resulted in considerable taxonomic problems. Because the number of species in Canadian oceans remains uncertain, there is a need to incorporate molecular methods into species identifications. A 648 base pair segment of the cytochrome c oxidase subunit I gene has proven useful for the identification and discovery of species in many animal lineages. While the utility of DNA barcoding in molluscs has been demonstrated in other studies, this is the first effort to construct a DNA barcode registry for marine molluscs across such a large geographic area.

Methodology/Principal Findings

This study examines patterns of DNA barcode variation in 227 species of Canadian marine molluscs. Intraspecific sequence divergences ranged from 0–26.4% and a barcode gap existed for most taxa. Eleven cases of relatively deep (>2%) intraspecific divergence were detected, suggesting the possible presence of overlooked species. Structural variation was detected in COI with indels found in 37 species, mostly bivalves. Some indels were present in divergent lineages, primarily in the region of the first external loop, suggesting certain areas are hotspots for change. Lastly, mean GC content varied substantially among orders (24.5%–46.5%), and showed a significant positive correlation with nearest neighbour distances.

Conclusions/Significance

DNA barcoding is an effective tool for the identification of Canadian marine molluscs and for revealing possible cases of overlooked species. Some species with deep intraspecific divergence showed a biogeographic partition between lineages on the Atlantic, Arctic and Pacific coasts, suggesting the role of Pleistocene glaciations in the subdivision of their populations. Indels were prevalent in the barcode region of the COI gene in bivalves and gastropods. This study highlights the efficacy of DNA barcoding for providing insights into sequence variation across a broad taxonomic group on a large geographic scale.  相似文献   
4.
The binding and transport of glycoalbumin (gA) by the endothelium of murine myocardial microvessels were studied by perfusing in situ 125I-gA or gA-gold complexes (gA-Au) and examining the specimens by radioassays and EM, respectively. After a 3-min perfusion, the uptake of radioiodinated gA is 2.2-fold higher than that of native albumin; it is partially (approximately 55%) competed by either albumin or D-glucose, and almost completely abolished by the concomitant administration of both competitors or by gA. D-mannose and D-galactose are not effective competitors. Unlike albumin-gold complexes that bind restrictively to plasmalemmal vesicles, gA-Au labels the plasma-lemma proper, plasmalemmal vesicles open on the lumen, and most coated pits. Competing albumin prevents gA-Au binding to the membrane of plasmalemmal vesicles, while glucose significantly reduces the ligand binding to plasmalemma proper. Competition with albumin and glucose gives additive effects. Transcytosis of gA-Au, already detected at 3 min, becomes substantial by 30 min. No tracer exit via intercellular junctions was detected. gA-Au progressively accumulates in multivesicular bodies. The results of the binding and competition experiments indicate that the gA behaves as a bifunctional ligand which is recognized by two distinct binding sites: one, located on the plasma membrane, binds as a lectin the glucose residues of gA; whereas the other, confined to plasmalemmal vesicles, recognizes presumably specific domains of the albumin molecule.  相似文献   
5.
Apoptotic cell death induced by kainic acid (KA) in cultures of rat cerebellar granule cells (CGC) and in different brain regions of Wistar rat pups on postnatal day 21 (P21) was studied. In vitro , KA (100–500 μM) induced a concentration-dependent loss of cell viability in MTT assay and cell death had apoptotic morphology as studied by chromatin staining with propidium iodide (PI). In vivo , twenty-four hours after induction of status epilepticus (SE) by an intraperitoneal KA injection (5 mg/kg) we quantified apoptotic cells in hippocampus (CA1 and CA3), parietal cortex and cerebellum using PI staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) technique. We report that dantrolene, a specific ryanodine receptor antagonist, was able to significantly reduce the apoptotic cell death in CGC cultures and in hyppocampal CA1 and parietal cortex regions. Our finding can be valuable for neuroprotective therapy strategies in patients with repeated generalized seizures or status epilepticus.  相似文献   
6.

Background  

Gonadal differentiation in the mammalian fetus involves a complex dose-dependent genetic network. Initiation and progression of fetal ovarian and testicular pathways are accompanied by dynamic expression patterns of thousands of genes. We postulate these expression patterns are regulated by small non-coding RNAs called microRNAs (miRNAs). The aim of this study was to identify the expression of miRNAs in mammalian fetal gonads using sheep as a model.  相似文献   
7.
DNA sequence comparisons of two mitochondrial DNA genes were used to infer phylogenetic relationships among 17 Felidae species, notably 15 in the previously described pantherine lineage. The polymerase chain reaction (PCR) was used to generate sequences of 358 base pairs of the mitochondrial 12S RNA gene and 289 base pairs of the cytochrome b protein coding gene. DNA sequences were compared within and between 17 felid and five nonfelid carnivore species. Evolutionary trees were constructed using phenetic, cladistic, and maximum likelihood algorithms. The combined results suggested several phylogenetic relationships including (1) the recognition of a recently evolved monophyletic genus Panthera consisting of Panthera leo, P. pardus, P. onca, P. uncia, P. tigris, and Neofelis nebulosa; (2) the recent common ancestry of Acinonyx jubatus, the African cheetah, and Puma concolor, the American puma; and (3) two golden cat species, Profelis temmincki and Profelis aurata, are not sister species, and the latter is strongly associated with Caracal caracal. These data add to the growing database of vertebrate mtDNA sequences and, given the relatively recent divergence among the felids represented here (1-10 Myr), allow 12S and cytochrome b sequence evolution to be addressed over a time scale different from those addressed in most work on vertebrate mtDNA.   相似文献   
8.
Plasmalemmal vesicles (PVs) or caveolae are plasma membrane invaginations and associated vesicles of regular size and shape found in most mammalian cell types. They are particularly numerous in the continuous endothelium of certain microvascular beds (e.g., heart, lung, and muscles) in which they have been identified as transcytotic vesicular carriers. Their chemistry and function have been extensively studied in the last years by various means, including several attempts to isolate them by cell fractionation from different cell types. The methods so far used rely on nonspecific physical parameters of the caveolae and their membrane (e.g., size-specific gravity and solubility in detergents) which do not rule out contamination from other membrane sources, especially the plasmalemma proper. We report here a different method for the isolation of PVs from plasmalemmal fragments obtained by a silica-coating procedure from the rat lung vasculature. The method includes sonication and flotation of a mixed vesicle fraction, as the first step, followed by specific immunoisolation of PVs on anticaveolin-coated magnetic microspheres, as the second step. The mixed vesicle fraction, is thereby resolved into a bound subfraction (B), which consists primarily of PVs or caveolae, and a nonbound subfraction (NB) enriched in vesicles derived from the plasmalemma proper. The results so far obtained indicate that some specific endothelial membrane proteins (e.g., thrombomodulin, functional thrombin receptor) are distributed about evenly between the B and NB subfractions, whereas others are restricted to the NB subfraction (e.g., angiotensin converting enzyme, podocalyxin). Glycoproteins distribute unevenly between the two subfractions and antigens involved in signal transduction [e.g., annexin II, protein kinase C alpha, the G alpha subunits of heterotrimeric G proteins (alpha s, alpha q, alpha i2, alpha i3), small GTP-binding proteins, endothelial nitric oxide synthase, and nonreceptor protein kinase c-src] are concentrated in the NB (plasmalemma proper-enriched) subfraction rather than in the caveolae of the B subfraction. Additional work should show whether discrepancies between our findings and those already recorded in the literature represent inadequate fractionation techniques or are accounted for by chemical differentiation of caveolae from one cell type to another.  相似文献   
9.
10.
The genus Plutella was thought to be represented in Australia by a single introduced species, Plutella xylostella (Linnaeus), the diamondback moth. Its status as a major pest of cruciferous crops, and the difficulty in developing control strategies has motivated broad-ranging studies on its biology. Prior genetic work has generally supported the conclusion that populations of this migratory species are connected by substantial gene flow. However, the present study reveals the presence of two genetically divergent lineages of this taxonin Australia. One shows close genetic and morphological similarity with the nearly cosmopolitan Plutella xylostella. The second lineage possesses a similar external morphology, but marked sequence divergence in the barcode region of the cytochrome c oxidase I gene, coupled with clear differences in genitalia. As a consequence, members of this lineage are described as a new species, Plutella australiana Landry & Hebert, which is broadly distributed in the eastern half of Australia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号