首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   3篇
  2017年   1篇
  2016年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  2000年   2篇
  1999年   2篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1978年   1篇
排序方式: 共有18条查询结果,搜索用时 15 毫秒
1.
2.
The microbial production of 1,3-propanediol (1,3-PD) from glucose was studied in a two-stage fermentation process on a laboratory scale. In the first stage, glucose was converted to glycerol either by the osmotolerant yeast Pichia farinosa or by a recombinant Escherichia coli strain. In the second stage, glycerol in the broth from the first stage was converted to 1,3-PD by Klebsiella pneumoniae. The culture broth from P. farinosa was shown to contain toxic metabolites that strongly impair the growth of K. pneumoniae and the formation of 1,3-PD. Recombinant E. coli is more suitable than P. farinosa for producing glycerol in the first stage. The fermentation pattern from glycerol can be significantly altered by the presence of acetate, leading to a significant reduction of PD yield in the second stage. However, in the recombinant E. coli culture acetate formation can be prevented by fed-batch cultivation under limiting glucose supply, resulting in an effective production of 1,3-PD in the second stage with a productivity of 2.0 g l(-1) h(-1) and a high yield (0.53 g/g) close to that of glycerol fermentation in a synthetic medium. The overall 1,3-PD yield from glucose in the two stage-process with E. coli and K. pneumoniae reached 0.17 g/g.  相似文献   
3.
Japanese eel immunoglobulin M (IgM) was purified from the sera of Anguilla japonica immunized with Edwardsiella tarda FPU 347 and characterized. Analysis of the purified IgM on sodium dodecyl sulfate-polyacrylamide gels (SDS-PAGE) under reducing and non-reducing conditions revealed that the eel IgM was a tetrameric protein with a molecular weight of 790 000; it contained an equimolar heavy chain and light chain with molecular weights of 72 000 and 25 000, respectively. While the N-terminal sequence of the heavy chain, VELTQPGSMVLKPGQSLTI, showed similarity to the variable regions of those of teleost fishes Igs, the N-terminal sequence of the light chain, DIVLTQSPAVQSVQLGDT, was similar to the variable regions of chondrostei and mammalian kappa chains. Lectin-binding assays showed that the binding of concanavalin A (Con A) to the Japanese eel IgM heavy chain was competitively inhibited by -mannose and could be abolished by α-mannosidase treatment indicating the presence on the heavy chain of oligosaccharides, whose terminal were a bound mannoses. The average IgM concentration in the sera of the healthy eels was 3.4 mg ml−1; it amounted to 10.3% of the total serum protein.  相似文献   
4.
We studied the ethylene-insensitive, hypernodulating mutant, sickle (skl), to investigate the interaction of ethylene with auxin transport during root nodulation in Medicago truncatula. Grafting experiments demonstrated that hypernodulation in skl is root controlled. Long distance transport of auxin from shoot to root was reduced by rhizobia after 24 h in wild type but not in skl. Similarly, the ethylene precursor 1-amino cyclopropane-1-carboxylic acid inhibited auxin transport in wild type but not in skl. Auxin transport at the nodule initiation zone was significantly reduced by rhizobia after 4 h in both wild type and skl. After 24 h, auxin transport significantly increased at the nodule initiation zone in skl compared to wild type, accompanied by an increase in the expression of the MtPIN1 and MtPIN2 (pin formed) auxin efflux transporters. Response assays to different auxins did not show any phenotype that would suggest a defect of auxin uptake in skl. The auxin transport inhibitor N-1-naphthylphtalamic acid inhibited nodulation in wild type but not skl, even though N-1-naphthylphtalamic acid still inhibited auxin transport in skl. Our results suggest that ethylene signaling modulates auxin transport regulation at certain stages of nodule development, partially through PIN gene expression, and that an increase in auxin transport relative to the wild type is correlated with higher nodule numbers. We also discuss the regulation of auxin transport in skl in comparison to previously published data on the autoregulation mutant, super numerary nodules (van Noorden et al., 2006).  相似文献   
5.
6.

Background  

Metabolically versatile soil bacteria Burkholderia cepacia complex (Bcc) have emerged as opportunistic pathogens, especially of cystic fibrosis (CF). Previously, we initiated the characterization of the phenylacetic acid (PA) degradation pathway in B. cenocepacia, a member of the Bcc, and demonstrated the necessity of a functional PA catabolic pathway for full virulence in Caenorhabditis elegans. In this study, we aimed to characterize regulatory elements and nutritional requirements that control the PA catabolic genes in B. cenocepacia K56-2.  相似文献   
7.
The relationship between wall anionic polymer synthesis and cell morphology has been studied in Bacillus subtilis 168 and its temperature-sensitive tagB mutant strain BR19-200B. The amount and type of anionic polymer synthesized varied under different growth conditions, as did the morphology of the bacteria. Anionic polymer synthesis was affected by the phosphate supply. It was also found that teichuronic acid synthesis was temperature-sensitive in wild-type bacteria. Teichuronic acid synthesis was affected by the tagB lesion, previously thought to affect only teichoic acid synthesis. A relationship was observed between synthesis of the alternative polymers, such that suppression of teichuronic acid synthesis is accompanied by an increase in the synthesis of teichoic acid. Variation in anionic polymer content was accompanied by variation in cell shape. Differences in shape were related to differences in total anionic polymer rather than to differences in individual polymer type.  相似文献   
8.
Type 2 inflammation is a defining feature of infection with parasitic worms (helminths), as well as being responsible for widespread suffering in allergies. However, the precise mechanisms involved in T helper (Th) 2 polarization by dendritic cells (DCs) are currently unclear. We have identified a previously unrecognized role for type I IFN (IFN‐I) in enabling this process. An IFN‐I signature was evident in DCs responding to the helminth Schistosoma mansoni or the allergen house dust mite (HDM). Further, IFN‐I signaling was required for optimal DC phenotypic activation in response to helminth antigen (Ag), and efficient migration to, and localization with, T cells in the draining lymph node (dLN). Importantly, DCs generated from Ifnar1?/? mice were incapable of initiating Th2 responses in vivo. These data demonstrate for the first time that the influence of IFN‐I is not limited to antiviral or bacterial settings but also has a central role to play in DC initiation of Th2 responses.  相似文献   
9.
Ethylene has been hypothesised to be a regulator of root nodule development in legumes, but its molecular mechanisms of action remain unclear. The skl mutant is an ethylene-insensitive legume mutant showing a hypernodulation phenotype when inoculated with its symbiont Sinorhizobium meliloti. We used the skl mutant to study the ethylene-mediated protein changes during nodule development in Medicago truncatula. We compared the root proteome of the skl mutant to its wild-type in response to the ethylene precursor aminocyclopropane carboxylic acid (ACC) to study ethylene-mediated protein expression in root tissues. We then compared the proteome of skl roots to its wild-type after Sinorhizobium inoculation to identify differentially displayed proteins during nodule development at 1 and 3 days post inoculation (dpi). Six proteins (pprg-2, Kunitz proteinase inhibitor, and ACC oxidase isoforms) were down-regulated in skl roots, while three protein spots were up-regulated (trypsin inhibitor, albumin 2, and CPRD49). ACC induced stress-related proteins in wild-type roots, such as pprg-2, ACC oxidase, proteinase inhibitor, ascorbate peroxidase, and heat-shock proteins. However, the expression of stress-related proteins such as pprg-2, Kunitz proteinase inhibitor, and ACC oxidase, was down-regulated in inoculated skl roots. We hypothesize that during early nodule development, the plant induces ethylene-mediated stress responses to limit nodule numbers. When a mutant defective in ethylene signaling, such as skl, is inoculated with rhizobia, the plant stress response is reduced, resulting in increased nodule numbers.  相似文献   
10.
Most rhizobial strains inhibit rice root growth in the presence of calcium or potassium nitrates, but not ammonium nitrate. Certain rhizobial strains, however, such as strain R4, do not inhibit rice growth and can enter rice roots and multiply in the intercellular spaces. By using the green fluorescent protein (GFP) as a visual marker, it was found that Rhizobium became intimately associated with rice seedling roots within 24-48 h. During this initial period it was observed that strain R4 could cause structural changes resembling infection threads within the rice root hairs. Generally, the sites of the emerging lateral roots provide a temporary entry point for rhizobia, either by root hair entry or crack entry. All tested GFP-labelled Rhizobium strains infected the root hairs near the base of growing lateral roots. This study suggests that some strains may have the ability to infect rice root tissues via root hairs located at the emerging lateral roots and to spread extensively throughout the rice root.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号