首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88篇
  免费   4篇
  92篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   5篇
  2020年   1篇
  2019年   3篇
  2018年   2篇
  2017年   3篇
  2016年   7篇
  2015年   11篇
  2014年   5篇
  2013年   6篇
  2012年   6篇
  2011年   8篇
  2010年   8篇
  2009年   2篇
  2008年   2篇
  2007年   2篇
  2006年   4篇
  2005年   4篇
  2004年   1篇
  2003年   4篇
  2002年   4篇
  1997年   1篇
排序方式: 共有92条查询结果,搜索用时 15 毫秒
1.
Mycoparasitic strains of Trichoderma are applied as commercial biofungicides for control of soilborne plant pathogens. Although the majority of commercial biofungicides are Trichoderma based, chemical pesticides, which are ecological and environmental hazards, still dominate the market. This is because biofungicides are not as effective or consistent as chemical fungicides. Efforts to improve these products have been limited by a lack of understanding of the genetic regulation of biocontrol activities. In this study, using gene knockout and complementation, we identified the VELVET protein Vel1 as a key regulator of biocontrol, as well as morphogenetic traits, in Trichoderma virens, a commercial biocontrol agent. Mutants with mutations in vel1 were defective in secondary metabolism (antibiosis), mycoparasitism, and biocontrol efficacy. In nutrient-rich media they also lacked two types of spores important for survival and development of formulation products: conidia (on agar) and chlamydospores (in liquid shake cultures). These findings provide an opportunity for genetic enhancement of biocontrol and industrial strains of Trichoderma, since Vel1 is very highly conserved across three Trichoderma species.Trichoderma-based formulation products account for about 60% of the biofungicide market (35). Despite the use of Trichoderma-based biofungicides as an alternative and additive to chemical fungicides, the applications of these preparations are limited because their efficacy is lower than that of fungicides. A lack of understanding of the regulation of biocontrol has limited progress in enhancing the competitiveness of these fungi through genetic manipulation of desired traits. The success of a biocontrol agent also depends on the ability of researchers to develop an effective formulation based on active propagules that survive under the conditions that occur in nature and are effective against the target pathogens. Trichoderma spp. produce two types of propagules, conidia during solid-state fermentation and chlamydospores during liquid fermentation. Both types are used in commercial formulations depending on the growth conditions (17, 35). Thus, understanding how the two sporulation pathways are controlled is critical for obtaining an improved, balanced formulation product. Identification of a global regulator of morphogenesis and biocontrol properties (such as antibiosis and mycoparasitism) would provide an opportunity to manipulate the morphogenetic and antagonistic traits, leading to wider commercial acceptance of Trichoderma spp. in the long run.Trichoderma virens is a commercially formulated biocontrol agent that is effective against soilborne plant pathogens, such as Rhizoctonia solani, Sclerotium rolfsii, and Pythium spp.; its major direct mode of action is antibiosis and mycoparasitism (20, 36). This species has also been used as a model system for studies of biocontrol mechanisms, and the genome has recently been sequenced (http://genome.jgi-psf.org/Trive1). The role of beta-glucanases, chitinases, and proteases in biocontrol has been reported previously (2, 8, 29). Some strains of T. virens (designated Q strains) produce copious amounts of the antibiotic gliotoxin that is involved in biocontrol (10, 12, 39). In an attempt to identify regulators of biocontrol properties, the role of a mitogen-activated protein kinase (MAPK) pathway was studied previously (22, 24). Deletion of the TmkA/Tvk1 MAPK gene resulted in derepressed conidiation and different biocontrol behavior for two strains of T. virens; Mukherjee et al. (24) noted the reduced ability of these mutants to parasitize the sclerotia of S. rolfsii and R. solani, while Mendoza-Mendoza et al. (22) found that deletion of this MAPK gene improved the biocontrol activity of T. virens against R solani and P. ultimum. The production of secondary metabolites was not affected by deletion of this gene. To date, no gene that regulates the balance between conidiation or chlamydospore formation, secondary metabolism, and antagonistic or biocontrol properties has been identified in any Trichoderma sp.The Vel1 VELVET protein has been shown to be a regulator of morphogenesis and secondary metabolism in some filamentous fungi (6). In Aspergillus nidulans, VeA physically interacts with VelB and the regulator of secondary metabolism LaeA to form a complex that regulates secondary metabolism and sexual reproduction (3). Deletion of the VeA gene leads to an increase in asexual development (conidiation in the dark) and reduced biosynthesis of sterigmatocystin (the product of a polyketide synthetase [PKS]) and penicillin (the product of a nonribosomal peptide synthetase [NRPS]), while it reduces and delays sexual reproduction (15, 16). VeA is also required for the production of sclerotia and for aflatoxin biosynthesis in Aspergillus parasiticus (7). Deletion of the VeA gene in Neurospora crassa, like deletion of the VeA gene in A. nidulans, results in deregulated conidiation, while in Acremonium chrysogenum, loss of VeA leads to increased hyphal fragmentation and reduced cephalosporin production (4, 9). Deletion of the VeA gene in Fusarium verticilliodes resulted in a loss of hydrophobicity and an increased macroconidium-to-microconidium ratio; these defects could be restored by growing the organism on osmotically stabilized media (18). The mutants were also defective in production of the mycotoxins fumonisin and fusarin (25).To test the hypothesis that Vel1 is a global regulator of gene expression in T. virens, we examined the functions of Vel1 in this organism by using gene knockout and complementation. Here we report that in addition to a role in conidiation and secondary metabolism, Vel1 also regulates conidiophore aggregation, chlamydosporogenesis, mycoparasitism, and biocontrol efficacy in T. virens. Thus, we identified the first master regulator of morphogenesis and antagonistic properties in this economically important fungus.  相似文献   
2.
HIV-1 infected macrophages play a significant role in the neuropathogenesis of AIDS. HIV-1 viral protein R (Vpr) not only facilitates HIV-1 infection but also contribute to long-lived persistence in macrophages. Our previous studies using SILAC-based proteomic analysis showed that the expression of critical metabolic enzymes in the glycolytic pathway and tricarboxylic acid (TCA) cycle were altered in response to Vpr expression in macrophages. We hypothesized that Vpr-induced modulation of glycolysis and TCA cycle regulates glutamate metabolism and release in HIV-1 infected macrophages.

We assessed the amount of specific metabolites induced by Vpr and HIV-1 in macrophages at the intracellular and extracellular level in a time-dependent manner utilizing multiple reaction monitoring (MRM) targeted metabolomics. In addition, stable isotope-labeled glucose and an MRM targeted metabolomics assay were used to evaluate the de novo synthesis and release of glutamate in Vpr overexpressing macrophages and HIV-1 infected macrophages, throughout the metabolic flux of glycolytic pathway and TCA cycle activation.

The metabolic flux studies demonstrated an increase in glucose uptake, glutamate release and accumulation of α-ketoglutarate (α-KG) and glutamine in the extracellular milieu in Vpr expressing and HIV-1 infected macrophages. Interestingly, glutamate pools and other intracellular intermediates (glucose-6-phosphate (G6P), fructose-6-phosphate (F6P), citrate, malate, α-KG, and glutamine) showed a decreased trend except for fumarate, in contrast to the glutamine accumulation observed in the extracellular space in Vpr overexpressing macrophages.

Our studies demonstrate that dysregulation of mitochondrial glutamate metabolism induced by Vpr in HIV-1 infected macrophages commonly seen, may contribute to neurodegeneration via excitotoxic mechanisms in the context of NeuroAIDS.  相似文献   

3.
Human immunodeficiency virus type 1 encoded viral protein Vpr is essential for infection of macrophages by HIV-1. Furthermore, these macrophages are resistant to cell death and are viral reservoir. However, the impact of Vpr on the macrophage proteome is yet to be comprehended. The goal of the present study was to use a stable-isotope labeling by amino acids in cell culture (SILAC) coupled with mass spectrometry-based proteomics approach to characterize the Vpr response in macrophages. Cultured human monocytic cells, U937, were differentiated into macrophages and transduced with adenovirus construct harboring the Vpr gene. More than 600 proteins were quantified in SILAC coupled with LC-MS/MS approach, among which 136 were significantly altered upon Vpr overexpression in macrophages. Quantified proteins were selected and clustered by biological functions, pathway and network analysis using Ingenuity computational pathway analysis. The proteomic data illustrating increase in abundance of enzymes in the glycolytic pathway (pentose phosphate and pyruvate metabolism) was further validated by western blot analysis. In addition, the proteomic data demonstrate down regulation of some key mitochondrial enzymes such as glutamate dehydrogenase 2 (GLUD2), adenylate kinase 2 (AK2) and transketolase (TKT). Based on these observations we postulate that HIV-1 hijacks the macrophage glucose metabolism pathway via the Vpr-hypoxia inducible factor 1 alpha (HIF-1 alpha) axis to induce expression of hexokinase (HK), glucose-6-phosphate dehyrogenase (G6PD) and pyruvate kinase muscle type 2 (PKM2) that facilitates viral replication and biogenesis, and long-term survival of macrophages. Furthermore, dysregulation of mitochondrial glutamate metabolism in macrophages can contribute to neurodegeneration via neuroexcitotoxic mechanisms in the context of NeuroAIDS.  相似文献   
4.
The Fanconi anemia DNA repair pathway is pivotal for the efficient repair of DNA interstrand cross-links. Here, we show that FA-defective (Fancc) DT40 cells arrest in G2 phase following cross-link damage and trigger apoptosis. Strikingly, cell death was reduced in Fancc cells by additional deletion of the BRCA1 tumor suppressor, resulting in elevated clonogenic survival. Increased resistance to cross-link damage was not due to loss of toxic BRCA1-mediated homologous recombination but rather through the loss of a G2 checkpoint. This proapoptotic role also required the BRCA1-A complex member ABRAXAS (FAM175A). Finally, we show that BRCA1 promotes G2 arrest and cell death by prolonging phosphorylation of Chk1 on serine 345 after DNA damage to sustain arrest. Our data imply that DNA-induced cross-link death in cells defective in the FA pathway is dependent on the ability of BRCA1 to prolong cell cycle arrest in G2 phase.  相似文献   
5.
Polyhydroxyalkanoates (PHAs) as an alternative to synthetic plastics have been gaining increasing attention. Being natural in their origin, PHAs are completely biodegradable and eco-friendly. However, consistent efforts to exploit this biopolymer over the last few decades have not been able to pull PHAs out of their nascent stage, inspite of being the favorite of the commercial world. The major limitations are: (1) the high production cost, which is due to the high cost of the feed and (2) poor thermal and mechanical properties of polyhydroxybutyrate (PHB), the most commonly produced PHAs. PHAs have the physicochemical properties which are quite comparable to petroleum based plastics, but PHB being homopolymers are quite brittle, less elastic and have thermal properties which are not suitable for processing them into sturdy products. These properties, including melting point (Tm), glass transition temperature (Tg), elastic modulus, tensile strength, elongation etc. can be improved by varying the monomeric composition and molecular weight. These enhanced characteristics can be achieved by modifications in the types of substrates, feeding strategies, culture conditions and/or genetic manipulations.  相似文献   
6.
In this article, we report tuning of the sensory capability of an amino acid (tryptophan) in a biomimicking anionic micellar nano cage. It has been shown that anionic surfactant concentration dictates the sensing behavior of tryptophan toward body malodor component (butyric acid) generated by bacterial degradation of tributyrin. We have proposed a fluorescence quenching mechanism that is based on short-chain fatty acid (SCFA) proximity with tryptophan present at the micelle-water interface. Anionic surfactant-induced fluorescent sensor activity of tryptophan exhibits high sensitivity (detection limit up to 10 μM) and specific selectivity (toward SCFA, < C12) in aqueous solution. We also determined antibacterial efficacy of various zinc salts based on the sensory activity of tryptophan, which has been correlated with the established resazurin assay.  相似文献   
7.
Ecobiotechnological approach is an attractive and economical strategy to enrich beneficial microbes on waste biomass for production of Polyhydroxyalkanoate (PHA). Here, six strains of Bacillus spp. were used to produce co-polymers of PHA from pea-shells. Of the 57 mixed bacterial cultures (BCs) screened, two of the BCs, designated as 5BC1 and 5BC2, each containing 5 strains could produce PHA co-polymer at the rate of 505–560 mg/l from feed consisting of pea-shell slurry (PSS, 2 % total solids) and 1 % glucose (w/v). Co-polymer production was enhanced from 65–560 mg/l on untreated PSS to 1,610–1,645 mg/l from PSS treated with defined hydrolytic bacteria and 1 % glucose. Supplementation of the PSS hydrolysate with sodium propionate enabled 5BC1 to produce co-polymer P(3HB-co-3HV) with a 3HV content up to 13 % and a concomitant 1.46-fold enhancement in PHA yield. Using the principles of ecobiotechnology, this is the first demonstration of PHA co-polymer production by defined co-cultures of Bacillus from biowaste as feed under non-axenic conditions.  相似文献   
8.
    
Peptaibols are a group of small peptides having a high α-aminoisobutyric acid (Aib) content and produced by filamentous fungi, especially by the members of the genus Trichoderma (anamorph Hypocrea). These antibiotics are economically important for their anti-microbial and anti-cancer properties as well as ability to induce systemic resistance in plants against microbial invasion. In this study we present sequences of two classes (11-residue and 14-residue) of peptaibols produced by the biocontrol fungus Trichoderma virens. Of the 35 11-residue peptaibols sequenced, 18 are hitherto not described, and all the 53 14-residue sequences described by us here are new. We have also identified a peptaibol synthetase (non-ribosomal peptide synthetase, NRPS) with 14 complete modules in the genome of this fungus and disruption of this single gene (designated as tex2) resulted in the loss of both the classes of peptaibols. We, thus present here an unprecedented case where a single NRPS encodes for two classes of peptaibols. The new peptaibols identified here could have applications as therapeutic agents for the management of human and plant health.  相似文献   
9.
10.
    
Histone deacetylase (HDAC) inhibitors offer a promising strategy for cancer therapy and the first generation HDAC inhibitors are currently in clinical trials. A structurally novel series of HDAC inhibitors based on the natural cyclic tetrapeptide Apicidin is described. Selected screening of the sample collection looking for L-2-amino-8-oxodecanoic acid (L-Aoda) derivatives identified a small acyclic lead molecule 1 with the unusual ketone zinc binding group. SAR studies around this lead resulted in optimization to potent, low molecular weight, selective, non-hydroxamic acid HDAC inhibitors, equipotent to current clinical candidates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号