首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
  12篇
  2013年   1篇
  2011年   2篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2001年   1篇
  1998年   1篇
  1996年   1篇
  1994年   1篇
排序方式: 共有12条查询结果,搜索用时 0 毫秒
1.
Prochlorothrix hollandica is one of the three known species of an unusual clade of cyanobacteria (formerly called “prochlorophytes”) that contain chlorophyll a and b molecules bound to intrinsic light-harvesting antenna proteins. Here, we report the structural characterization of supramolecular complex consisting of Photosystem I (PSI) associated with the chlorophyll a/b-binding Pcb proteins. Electron microscopy and single particle image analysis of negatively stained preparations revealed that the Pcb-PSI supercomplex consists of a central trimeric PSI surrounded by a ring of 18 Pcb subunits. We conclude that the formation of the Pcb ring around trimeric PSI represents a mechanism for increasing the light-harvesting efficiency in chlorophyll b-containing cyanobacteria.  相似文献   
2.
This study reports on kinetics of the fluorescence decay in a suspension of the alga Scenedesmus quadricauda after actinic illumination. These are monitored as the variable fluorescence signal in the dark following light pulses of variable intensity and duration. The decay reflects the restoration of chlorophyll fluorescence quenching of the photosystem II (PSII) antennas and shows a polyphasic pattern which suggests the involvement of different processes. The overall quenching curve after a fluorescence-saturating pulse (SP) of 250-ms duration, commonly used in pulse amplitude modulation applications as the tool for estimating the maximal fluorescence (F m), has been termed P–O, in which P and O have the same meaning as used in the OJIP induction curve in the light. Deconvolution of this signal shows at least three distinguishable exponential phases with reciprocal rate constants of the order of 10, 102, and 103 ms. The size of the long (>103 ms) and moderate (~102 ms) lasting components relative to the complete quenching signal after an SP increases with the duration of the actinic pulse concomitantly with an increase in the reciprocal rate constants of the fast (~10 ms) and moderate quenching phases. Fluorescence responses upon single turnover flashes of 30-μs duration (STFs) given at discrete times during the P–O quenching were used as tools for identifying the quencher involved in the P–O quenching phase preceding the STF excitation. Results are difficult to interpret in terms of a single-hit two-state trapping mechanism with distinguishable quenching properties of open and closed reaction centers only. They give support for an earlier hypothesis on a double-hit three-state trapping mechanism in which the so-called semi-closed reaction centers of PSII are considered. In these trapping-competent centers the single reduced acceptor pair [PheQ A]1?, depending on the size of photoelectrochemically induced pH effects on the Q B-binding site, functions as an efficient fluorescence quencher.  相似文献   
3.
Exposure of algae or higher plants to bright light can result in a photoinhibitory reduction in the number of functional PS II reaction centers (n) and a consequential decrease in the maximum quantum yield of photosynthesis. However, we found that light-saturated photosynthetic rates (Pmax) in natural phytoplankton assemblages sampled from the south Pacific ocean were not reduced despite photoinhibitory decreases in n of up to 52%. This striking insensitivity of Pmax to photoinhibition resulted from reciprocal increases in electron turnover ( )through the remaining functional PS II centers. Similar insensitivity of Pmax was also observed in low light adapted cultures of Thalassiosira weissflogii (a marine diatom), but not in high light adapted cells where Pmax decreased in proportion to n. This differential sensitivity to decreases in n occurred because was close to the maximum achievable rate in the high light adapted cells, whereas was initially low in the low light adapted cells and could thus increase in response to decreases in n. Our results indicate that decreases in plant productivity are not necessarily commensurate with photoinhibition, but rather will only occur if decreases in n are sufficient to maximize or incident irradiance becomes subsaturating.  相似文献   
4.
Chlorophyll fluorescence is routinely taken as a quantifiable measure of the redox state of the primary quinone acceptor QA of PSII. The variable fluorescence in thylakoids increases in a single turnover flash (STF) from its low dark level F o towards a maximum F mSTF when QA becomes reduced. We found, using twin single turnover flashes (TTFs) that the fluorescence increase induced by the first twin-partner is followed by a 20–30% increase when the second partner is applied within 20–100 μs after the first one. The amplitude of the twin response shows a period-of-four oscillation associated with the 4-step oxidation of water in the Kok cycle (S states) and originates from two different trapped states with a life time of 0.2–0.4 and 2–5 ms, respectively. The oscillation is supplemented with a binary oscillation associated with the two-electron gate mechanism at the PSII acceptor side. The F(t) response in high frequency flash trains (1–4 kHz) shows (i) in the first 3–4 flashes a transient overshoot 20–30% above the F mSTF = 3*F o level reached in the 1st flash with a partial decline towards a dip D in the next 2–3 ms, independent of the flash frequency, and (ii) a frequency independent rise to F m = 5*F o in the 3–60 ms time range. The initial overshoot is interpreted to be due to electron trapping in the S0 fraction with QB-nonreducing centers and the dip to the subsequent recovery accompanying the reoxidation of the double reduced acceptor pair in these RCs after trapping. The rise after the overshoot is, in agreement with earlier findings, interpreted to indicate a photo-electrochemical control of the chlorophyll fluorescence yield of PSII. It is anticipated that the double exciton and electron trapping property of PSII is advantageous for the plant. It serves to alleviate the depression of electron transport in single reduced QB-nonreducing RCs, associated with electrochemically coupled proton transport, by an increased electron trapping efficiency in these centers.  相似文献   
5.
The oxygen flash yield (YO2) and photochemical yield of PS II (PS II) were simultaneously detected in intact Chlorella cells on a bare platinum oxygen rate electrode. The two yields were measured as a function of background irradiance in the steady-state and following a transition from light to darkness. During steady-state illumination at moderate irradiance levels, YO2 and PS II followed each other, suggesting a close coupling between the oxidation of water and QA reduction (Falkowski et al. (1988) Biochim. Biophys. Acta 933: 432–443). Following a light-to-dark transition, however, the relationship between QA reduction and the fraction of PS II reaction centers capable of evolving O2 became temporarily uncoupled. PS II recovered to the preillumination levels within 5–10 s, while the YO2 required up to 60 s to recover under aerobic conditions. The recovery of YO2 was independent of the redox state of QA, but was accompanied by a 30% increase in the functional absorption cross-section of PS II (PS II). The hysteresis between YO2 and the reduction of QA during the light-to-dark transition was dependent upon the reduction level of the plastoquinone pool and does not appear to be due to a direct radiative charge back-reaction, but rather is a consequence of a transient cyclic electron flow around PS II. The cycle is engaged in vivo only when the plastoquinone pool is reduced. Hence, the plastoquinone pool can act as a clutch that disconnects the oxygen evolution from photochemical charge separation in PS II.Abbreviations ADRY acceleration of the deactivation reactions of the water-splitting enzyme (agents) - Chl chlorophyll - cyt cytochrome - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - FO minimum fluorescence yield in the dark-adapted state - FI minimum fluorescence yield under ambient irradiance or during transition from the light-adapted state - FM maximum fluorescence yield in the dark-adapted state - FM maximum fluorescence yield under ambient irradiance or during transition from light-adapted state - FV, FV variable fluorescence (FV=FM–FO ; FV=FM–FI) - FRR fast repetition rate (fluorometer) - PS II quantum yield of QA reduction (PS II=(FM – FO)/FM or PS II)=(FM= – FI=)/FM=) - LHCII Chl a/b light harvesting complexes of Photosystem II - OEC oxygen evolving complex of PS II - P680 reaction center chlorophyll of PS II - PQ plastoquinone - POH2 plastoquinol - PS I Photosystem I - PS II Photosystem II - RC II reaction centers of Photosystem II - PS II the effective absorption cross-section of PHotosystem II - TL thermoluminescence - YO2 oxygen flash yield The US Government right to retain a non-exclusive, royalty free licence in and to any copyright is acknowledged.  相似文献   
6.
7.
8.
9.
10.
The increase of chlorophyll fluorescence yield in chloroplasts in a 12.5 Hz train of saturating single turnover flashes and the kinetics of fluorescence yield decay after the last flash have been analyzed. The approximate twofold increase in Fm relative to Fo, reached after 30-40 flashes, is associated with a proportional change in the slow (1-20 s) component of the multiphasic decay. This component reflects the accumulation of a sizeable fraction of QB-nonreducing centers. It is hypothesized that the generation of these centers occurs in association with proton transport across the thylakoid membrane. The data are quantitatively consistent with a model in which the fluorescence quenching of QB-nonreducing centers is reversibly released after second excitation and electron trapping on the acceptor side of Photosystem II.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号