首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   201篇
  免费   6篇
  207篇
  2022年   1篇
  2021年   12篇
  2020年   5篇
  2019年   5篇
  2018年   8篇
  2017年   2篇
  2016年   11篇
  2015年   7篇
  2014年   11篇
  2013年   22篇
  2012年   4篇
  2011年   7篇
  2010年   12篇
  2009年   7篇
  2008年   10篇
  2007年   10篇
  2006年   22篇
  2005年   9篇
  2004年   13篇
  2003年   6篇
  2002年   4篇
  2001年   1篇
  2000年   3篇
  1999年   7篇
  1997年   1篇
  1992年   1篇
  1990年   2篇
  1989年   1篇
  1987年   2篇
  1979年   1篇
排序方式: 共有207条查询结果,搜索用时 0 毫秒
1.
2.
Bovine BSP5 belongs to the Binder of SPerm (BSP) family. BSP5 plays a role in the bovine sperm capacitation by promoting cholesterol and phospholipid efflux. The variable N-terminal part in the BSP proteins is the uncharacterized region with no known function. Full-length, N-terminal part, and individual fibronectin type II domains of bovine BSP5 were cloned, expressed and purified from Escherichia coli. His-S tagged N-terminal part showed large variation in migration on SDS-PAGE in comparison to other constructs. Using mass spectrometry it was demonstrated that the His-S-N-terminal part has the expected molecular mass (13 kDa). The recombinant N-terminal part was sensitive to E. coli endogenous proteases during purification. Denaturing purification involving boiling lysis of cells was carried out, as the protein was thermostable. The His-S-N-terminal part lacked structure as determined by CD analysis. Bioinformatics analyses confirmed that the N-terminal part of bovine BSP5 is intrinsically disordered. In addition, bioinformatics analysis indicated that rabbit BSP and multiple forms of BSP proteins of bovine and equine species possess partially or completely disordered N-terminus. The conservation of disorder at the N-terminus in BSP members belonging to different species suggests a role in biological process such as sperm capacitation and/or sperm-egg interactions.  相似文献   
3.
Myostatin is a negative regulator of skeletal muscle growth. Muscle tissue is the largest tissue in the body and influences body growth. Commercial Avian broiler chickens are selected for high growth rate and muscularity. Daweishan mini chickens are a slow growing small-sized chicken breed. We investigated the relations between muscle (breast and leg) myostatin mRNA expression and body and muscle growth. Twenty chickens per breed were slaughtered at 0, 30, 60, 90, 120, and 150 days of age. Body and muscle weights were higher at all times in Avian chickens. Breast muscle myostatin expression was higher in Avian chickens than in Daweishan mini chickens at day 30. Myostatin expression peaked at day 60 in Daweishan mini chickens and expression remained higher in breast muscle. Daweishan mini chickens myostatin expression correlated positively with carcass weight, breast and leg muscle weight from day 0 to 60, and correlated negatively with body weight from day 90 to 150, while myostatin expression in Avian chickens was negatively correlated with carcass and muscle weight from day 90 to 150. The results suggest that myostatin expression is related to regulation of body growth and muscle development, with two different regulatory mechanisms that switch between days 30 and 60.  相似文献   
4.
Pharmaceutical excipients contain reactive groups and impurities due to manufacturing processes that can cause decomposition of active drug compounds. The aim of this investigation was to determine if commercially available oral disintegrating tablet (ODT) platforms induce active pharmaceutical ingredient (API) degradation. Benzocaine was selected as the model API due to known degradation through ester and primary amino groups. Benzocaine was either compressed at a constant pressure, 20 kN, or at pressure necessary to produce a set hardness, i.e., where a series of tablets were produced at different compression forces until an average hardness of approximately 100 N was achieved. Tablets were then stored for 6 months under International Conference on Harmonization recommended conditions, 25°C and 60% relative humidity (RH), or under accelerated conditions, 40°C and 75% RH. Benzocaine degradation was monitored by liquid chromatography–mass spectrometry. Regardless of the ODT platform, no degradation of benzocaine was observed in tablets that were kept for 6 months at 25°C and 60% RH. After storage for 30 days under accelerated conditions, benzocaine degradation was observed in a single platform. Qualitative differences in ODT platform behavior were observed in physical appearance of the tablets after storage under different temperature and humidity conditions.  相似文献   
5.
ABSTRACT

FT-IR and FT-Raman spectra of 2,2′-bipyridine-3,3′-dicarboxylic acid (B3DA), 2,2′-bipyridine-4,4′-dicarboxylic acid (B4DA) and 2,2′-bipyridine-5,5′-dicarboxylic acid (B5DA) were recorded and analysed. The quantum chemical calculations of the title compounds begin with barrier potentials at different rotation angles around the C–C′ and C–Cα bonds in order to arrive conformation of lowest energy using DFT employing B3LYP functional with 6-311++G(d,p) basis set. This confirmation was further optimised to get the global minimum geometry. The vibrational frequencies along with IR, Raman intensities were computed, the rms error between observed and calculated frequencies were 11.2 cm?1, 10.2 cm?1 and 12.2 cm?1 for B3DA, B4DA, and B5DA. An 87-element modified valence force field is derived by solving the inverse vibrational problem using Wilson’s GF matrix method. This force field is refined using 163 observed fundamentals employing in overlay least-squares technique. The average error between computed and experimental frequencies was found as 12.85 cm?1 using potential energy distribution (PED) and eigenvectors. By using the gauge-independent atomic orbital (GIAO) method calculate the 1H and 13C NMR chemical shifts of the molecules and compared with experimental results. The first-order hyperpolarisability, HOMO and LUMO energies, molecular electrostatic potential (MESP) and natural orbital analysis (NBO) of titled compounds were evaluated using DFT.  相似文献   
6.

Aim

The development of anticancer drugs with specific targets is of prime importance in modern biology. This study investigates the angiopreventive and in vivo tumor inhibition activities of novel synthetic benzophenone–benzimidazole analogs.

Main methods

The multistep synthesis of novel benzophenone–benzimidazole analogs (8a–n) allowing substitution with methoxy, methyl and halogen groups at different positions on the identical chemical backbone and the variations in the number of substituents were synthesized and characterized. The newly synthesized compounds were further evaluated for cytotoxic and antiproliferative effects against Ehrlich ascites carcinoma (EAC) cells. The potent lead compounds were further assessed for antiangiogenic effects in a CAM model and a tumor-induced vasculature in vivo model. The effect of angioprevention on tumor growth was verified in a mouse model.

Key findings

The cytotoxicity studies revealed that compounds 8f and 8n are strongly cytotoxic. Analyzing the structure–activity relationship, we found that an increase in the number of methyl groups in addition to methoxy substitution at the para position of the benzoyl ring in compound 8n resulted in higher potency compared to 8f. Furthermore, neovessel formation in in vivo systems, such as the chorioallantoic membrane (CAM) and tumor-induced mice peritoneum models, was significantly suppressed and reflected the tumor inhibition observed in mice.

Significance

These results suggest the potential clinical application of compound 8n as an antiangiogenic drug for cancer therapy.  相似文献   
7.
8.
9.
Strand separation is obligatory for several DNA functions, including replication. However, local DNA properties such as A+T content or thermodynamic stability alone do not determine the susceptibility to this transition in vivo. Rather, superhelical stresses provide long-range coupling among the transition behaviors of all base pairs within a topologically constrained domain. We have developed methods to analyze superhelically induced duplex destabilization (SIDD) in genomic DNA that take into account both this long-range stress-induced coupling and sequence-dependent local thermodynamic stability. Here we apply this approach to examine the SIDD properties of 39 experimentally well-characterized autonomously replicating DNA sequences (ARS elements), which function as replication origins in the yeast Saccharomyces cerevisiae. We find that these ARS elements have a strikingly increased susceptibility to SIDD relative to their surrounding sequences. On average, these ARS elements require 4.78 kcal/mol less free energy to separate than do their immediately surrounding sequences, making them more than 2,000 times easier to open. Statistical analysis shows that the probability of this strong an association between SIDD sites and ARS elements arising by chance is approximately 4 × 10−10. This local enhancement of the propensity to separate to single strands under superhelical stress has obvious implications for origin function. SIDD properties also could be used, in conjunction with other known origin attributes, to identify putative replication origins in yeast, and possibly in other metazoan genomes.  相似文献   
10.
The purpose of this study is to elucidate the solution conformation of cyclic peptide 1 (cIBR), cyclo (1, 12)-Pen1-Pro2-Arg3-Gly4-Gly5-Ser6-Val7-Leu8-V al9-Thr10-Gly11-Cys12-OH, using NMR, circular dichroism (CD) and molecular dynamics (MD) simulation experiments. cIBR peptide (1), which is derived from the sequence of intercellular adhesion molecule-1 (ICAM-1, CD54), inhibits homotypic T-cell adhesion in vitro. The peptide hinders T-cell adhesion by inhibiting the leukocyte function-associated antigen-1 (LFA-1, CD11a/CD18) interaction with ICAM-1. Furthermore, Molt-3 T cells bind and internalize this peptide via cell surface receptors such as LFA-1. Peptide internalization by the LFA-1 receptor is one possible mechanism of inhibition of T-cell adhesion. The recognition of the peptide by LFA-1 is due to its sequence and conformation; therefore, this study can provide a better understanding for the conformational requirement of peptide-receptor interactions. The solution structure of 1 was determined using NMR, CD and MD simulation in aqueous solution. NMR showed a major and a minor conformer due to the presence of cis/trans isomerization at the X-Pro peptide bond. Because the contribution of the minor conformer is very small, this work is focused only on the major conformer. In solution, the major conformer shows a trans-configuration at the Pen1-Pro2 peptide bond as determined by HMQC NMR. The major conformer shows possible beta-turns at Pro2-Arg3-Gly4-Gly5, Gly5-Ser6-Val7-Leu8, and Val9-Thr10-Gly11-Cys12. The first beta-turn is supported by the ROE connectivities between the NH of Gly4 and the NH of Gly5. The connectivities between the NH of Ser6 and the NH of Val7, followed by the interaction between the amide protons of Val7 and Leu8, support the presence of the second beta-turn. Furthermore, the presence of a beta-turn at Val9-Thr10-Gly11-Cys12 is supported by the NH-NH connectivities between Thr10 and Gly11 and between Gly11 and Cys12. The propensity to form a type I beta-turn structure is also supported by CD spectral analysis. The cIBR peptide (1) shows structural similarity at residues Pro2 to Val7 with the same sequence in the X-ray structure of D1-domain of ICAM-1. The conformation of Pro2 to Val7 in this peptide may be important for its binding selectivity to the LFA-1 receptor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号