首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   15篇
  70篇
  2022年   2篇
  2021年   3篇
  2020年   1篇
  2016年   3篇
  2015年   3篇
  2014年   1篇
  2012年   6篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2007年   5篇
  2006年   3篇
  2005年   3篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   5篇
  1999年   6篇
  1997年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1988年   2篇
  1987年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1980年   2篇
排序方式: 共有70条查询结果,搜索用时 15 毫秒
1.
An isogenic set of "prophage-free," DNA repair-proficient and -deficient strains of Bacillus subtilis were characterized phenotypically. The mutant strains were provisionally classified into four categories on the basis of their sensitivity to DNA-damaging agents, their ability to release phage after lysogenization followed by damage to chromosomal DNA, and their impairment in genetic exchange. The properties of double Rec- mutants showed that recF and addA belong to different epistatic groups, whereas recF, recL, and recH fall into the same group. More than one pathway for genetic exchange might be operative in B. subtilis.  相似文献   
2.
Summary SPO1 DNA contains only 5 cleavage sites for restriction enzymes which recognize and cleave the sequence 5-G-G-C-C (HaeIII or BsuR). Fragments of SPO1 DNA cloned in E. coli to substitute 5-hydroxymethyluracil (HMU) by thymine (T) remain resistant to HaeIII indicating that this unexpectedly small number of cleavages by HaeIII is not correlated with the presence of HMU in the normal phage DNA. It was previously shown that SPO1 is neither subject to B. subtilis R restriction (Trautner et al., 1974) nor modification in vivo (Günthert et al., 1975). We now show that SPO1 DNA can however be restricted and modified in vitro.  相似文献   
3.
Osteoarthritis (OA) is a chronic disease affecting the cartilage of over 15% of Canadians. Synovial fluid mesenchymal progenitor cells (sfMPCs) are present in joints and are thought to contribute to healing. OA sfMPCs have a greater proliferative ability but decreased chondrogenic potential. However, little is known about the factors influencing/regulating the differences between normal and OA sfMPCs. Recently, our lab has shown that sfMPC chondrogenic differentiation in vitro is favorably biased toward a similar osmotic environment as they experience in vivo. The current study now examines the expression and functionality of a variety of ion channels in sfMPCs derived from normal individuals and early OA patients. Results indicated that there is differential ion channel regulation at the functional level and expression level in early OA sfMPCs. All ion channels were upregulated in early OA compared to normal sfMPCs with the exception of KCNMA1 at the mRNA level. At the protein level, TRPV4 was over expressed in early OA sfMPCs, while KCNJ12 and KCNMA1 were unchanged between normal and early OA sfMPCs. At the functional level, the inward rectifying potassium channel was under expressed in early OA sfMPCs, however the membrane potential was unchanged between normal and early OA sfMPCs. In the synovial environment itself, a number of differences in ion concentration between normal and early OA synovial fluid were observed. These findings suggest that normal and OA progenitor cells demonstrate functional differences in how they interact with the synovial ion environment.  相似文献   
4.
The type D simian retroviruses cause immunosuppression in macaques and have been reported as a presumptive opportunistic infection in a patient with AIDS. Previous evidence based on viral interference has strongly suggested that the type D simian viruses share a common but unknown cell surface receptor with three type C viruses: feline endogenous virus (RD114), baboon endogenous virus, and avian reticuloendotheliosis virus. Furthermore, the receptor gene for these viruses has been mapped to human chromosome 19q13.1-13.2. We now report the isolation and characterization of a cell surface receptor for this group of retroviruses by using a human T-lymphocyte cDNA library in a retroviral vector. Swiss mouse fibroblasts (NIH 3T3), which are naturally resistant to RD114, were transduced with the retroviral library and then challenged with an RD114-pseudotyped virus containing a dominant selectable gene for puromycin resistance. Puromycin selection yielded 12 cellular clones that were highly susceptible to a beta-galactosidase-encoding lacZ(RD114) pseudotype virus. Using PCR primers specific for vector sequences, we amplified a common 2.9-kb product from 10 positive clones. Expression of the 2.9-kb cDNA in Chinese hamster ovary cells conferred susceptibility to RD114, baboon endogenous virus, and the type D simian retroviruses. The 2.9-kb cDNA predicted a protein of 541 amino acids that had 98% identity with the previously cloned human Na+-dependent neutral-amino-acid transporter Bo. Accordingly, expression of the RD114 receptor in NIH 3T3 cells resulted in enhanced cellular uptake of L-[3H]alanine and L-[3H]glutamine. RNA blot (Northern) analysis suggested that the RD114 receptor is widely expressed in human tissues and cell lines, including hematopoietic cells. The human Bo transporter gene has been previously mapped to 19q13.3, which is closely linked to the gene locus of the RD114 receptor.  相似文献   
5.
Mutations in FLVCR2, a cell surface protein related by homology and membrane topology to the heme exporter/retroviral receptor FLVCR1, have recently been associated with Fowler syndrome, a vascular disorder of the brain. We previously identified FLVCR2 to function as a receptor for FY981 feline leukemia virus (FeLV). However, the cellular function of FLVCR2 remains unresolved. Here, we report the cellular function of FLVCR2 as an importer of heme, based on the following observations. First, FLVCR2 binds to hemin-conjugated agarose, and binding is competed by free hemin. Second, mammalian cells and Xenopus laevis oocytes expressing FLVCR2 display enhanced heme uptake. Third, heme import is reduced after the expression of FLVCR2-specific small interfering RNA (siRNA) or after the binding of the FY981 FeLV envelope protein to the FLVCR2 receptor. Finally, cells overexpressing FLVCR2 are more sensitive to heme toxicity, a finding most likely attributable to enhanced heme uptake. Tissue expression analysis indicates that FLVCR2 is expressed in a broad range of human tissues, including liver, placenta, brain, and kidney. The identification of a cellular function for FLVCR2 will have important implications in elucidating the pathogenic mechanisms of Fowler syndrome and of phenotypically associated disorders.Membrane transporters play essential roles in cellular homeostasis by importing substrates critical for cell growth and differentiation or by exporting substrates that cause toxicity. There are five major categories of membrane transporters consisting of over 550 transporter superfamilies (41). The major facilitator superfamily (MFS) is the largest and most diverse superfamily, consisting of over 10,000 members (31, 41). Transporters in this superfamily consist of 12 to 14 transmembrane (TM)-spanning segments and transport substrates as diverse as sugars, polyols, drugs, neurotransmitters, amino acids, organic/inorganic ions, and peptides (31). Recently, a disruption of MFS transporters that is associated with human diseases has been described, further confirming their role in the maintenance of normal cell homeostasis. The DIRC2 MFS transporter (substrate transported unknown) is disrupted in renal cell carcinoma cosegregating with a t(2;3)(q35;q21) chromosomal translocation (4). Mutations in the thiamine transporter THTR1 have been shown to be responsible for Rogers syndrome (14, 21), a thiamine-responsive megaloblastic anemia. We have recently reported that a disruption in the heme exporter FLVCR1 (MFSD7B) plays a role in Diamond Blackfan anemia (DBA) (40), a fatal infant anemia characterized by a block in erythroid progenitor cell development (3, 12, 13). The abrogation of FLVCR1 function in primary human hematopoietic stem cells (40) or in a human erythroid cell line (37) specifically disrupts erythropoiesis, mimicking the hematological features observed for patients with DBA. We have reported previously that FLVCR1 is disrupted not as a consequence of mutations in the FLVCR1 coding region but due to the aberrant splicing of specific FLVCR1 exons that reduces the expression and cell surface localization of the encoded FLVCR1 protein (40). Interestingly, the THTR1 and FLVCR1 proteins were shown previously to function as receptors for entry by feline leukemia retrovirus (FeLV) subgroup A (FeLV-A) (25) and FeLV-C (36, 46), respectively. These viruses disrupt the cellular function of these proteins in infected cats and can induce diseases that correlate with Rogers syndrome (17) and DBA (1, 28).Recently, mutations in the cell surface protein FLVCR2 (MFSD7C), an MFS transporter member, have been shown to be associated with Fowler syndrome (22, 26), a proliferative vascular disorder of the brain (16). A previous study (6) suggested that FLVCR2 functions as a calcium-chelate transporter based on its expression in murine and human tissues involved in calcium homeostasis. We have shown previously that FLVCR2 is highly related to the heme exporter/retroviral receptor FLVCR1 (7), and we have recently shown it to function as a receptor for the subgroup C FeLV variant FY981 (42). Based on its close sequence relationship to the heme exporter/retroviral receptor FLVCR1 and based on previous reports showing that retroviruses often adapt to use closely related cell surface proteins as receptors for infection (27, 30, 44), we investigated the heme transport function of FLVCR2. Here, we show the physiological function of FLVCR2 as an importer of heme.  相似文献   
6.
7.
Every year, nearly 200,000 patients undergo radiation for brain tumors. For both patients and caregivers the most distressing adverse effect is impaired cognition. Efforts to protect against this debilitating effect have suffered from inadequate understanding of the cellular mechanisms of radiation damage. In the past it was accepted that radiation-induced normal tissue injury resulted from a progressive reduction in the survival of clonogenic cells. Moreover, because radiation-induced brain dysfunction is believed to evolve over months to years, most studies have focused on late changes in brain parenchyma. However, clinically, acute changes in cognition are also observed. Because neurons are fully differentiated post-mitotic cells, little information exists on the acute effects of radiation on synaptic function. The purpose of our study was to assess the potential acute effects of radiation on neuronal function utilizing ex vivo hippocampal brain slices. The cellular localization and functional status of excitatory and inhibitory neurotransmitter receptors was identified by immunoblotting. Electrophysiological recordings were obtained both for populations of neuronal cells and individual neurons. In the dentate gyrus region of isolated ex vivo slices, radiation led to early decreases in tyrosine phosphorylation and removal of excitatory N-methyl-D-aspartate receptors (NMDARs) from the cell surface while simultaneously increasing the surface expression of inhibitory gamma-aminobutyric acid receptors (GABA(A)Rs). These alterations in cellular localization corresponded with altered synaptic responses and inhibition of long-term potentiation. The non-competitive NMDAR antagonist memantine blocked these radiation-induced alterations in cellular distribution. These findings demonstrate acute effects of radiation on neuronal cells within isolated brain slices and open new avenues for study.  相似文献   
8.
A novel series of bacterial topoisomerase (3-aminoquinazolinediones) inhibitors are described. The side-chain SAR against Gram-positive and Gram-negative organisms as well as DNA gyrase activity is reported.  相似文献   
9.
Apoptosis via the mitochondrial pathway requires release of cytochrome c into the cytosol to initiate formation of an oligomeric apoptotic protease-activating factor-1 (APAF-1) apoptosome. The apoptosome recruits and activates caspase-9, which in turn activates caspase-3 and -7, which then kill the cell by proteolysis. Because inactivation of this pathway may promote oncogenesis, we examined 10 ovarian cancer cell lines for resistance to cytochrome c-dependent caspase activation using a cell-free system. Strikingly, we found that cytosolic extracts from all cell lines had diminished cytochrome c-dependent caspase activation compared with normal ovarian epithelium extracts. The resistant cell lines expressed APAF-1 and caspase-9, -3, and -7; however, each demonstrated diminished APAF-1 activity relative to the normal ovarian epithelium cell lines. A competitive APAF-1 inhibitor may account for the diminished APAF-1 activity because we did not detect dominant APAF-1 inhibitors, altered APAF-1 isoform expression, or APAF-1 deletion, degradation, or mutation. Lack of APAF-1 activity correlated in some but not all cell lines with resistance to apoptosis. These data suggest that regulation of APAF-1 activity may be important for apoptosis regulation in some ovarian cancers.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号